slope intercept form
y = mx + b
point slope form
y - y1 = m(x - x1)
standard form of line
Ax + By = C
rate of change (1)
change in y / change in x
rate of change (2)
(y1 - y2)/(x1 - x2)
rate of change (3)
[f(a) - f(b)] / (a - b)
quadratic standard form
ax² + bx + c
quadratic formula
-b/2a +- sqrt(b²-4ac)/2a
sphere volume
V = 4/3 pi r³
sphere SA
SA = 4 pi r²
cone volume
V = 1/3 pi r²
trapezoid area
A = 1/2(h)(b1 + b2)
triangle area
A = 1/2(b)(h)
area of box
(l)(w)(h)
surface area of box
2(l)(w) + 2(l)(h) + 2(h)(w)
right triangle sin
opp/hyp
right triangle cos
adj/hyp
right tri tan
opp/adj
circ func sin
y/r
circ func cos
x/r
circ func tan
y/x
recip func csc
1/sin theta
recip func sec
1/cos theta
recip func cot
cos theta/sin theta, 1/tan theta
recip func, 1 = (1)
sin x csc x
recip func, 1 = (2)
cos x sec x
recip func, 1 = (3)
tan x cot x
pythag, 1 =
sin²x + cox²x
pythag, sec²=
1 + tan²x
pythag, csc²x=
1 + cot²x
lim sin x as x approaches c
sin c
lim cos x as x approaches c
cos c
f(x) continuous at point (c, f(c)) if (1)
f(c) exists
f(x) continuous at point (c, f(c)) if (2)
lim f(x) as x approaches c exists
f(x) continuous at point (c, f(c)) if (3)
lim f(x) as x approaches c = f(c)
even function (1)
sym w respect to y-axis
even function (2)
f(x) = -f(x)
odd func (1)
sym w respect to origin
odd func (2)
f(-x) = -f(x)
lim (sin x)/x as x approaches 0
1
lim (1-cos x)/x as x approaches 0
0
domain of sqrt[s(x)]
s(x) greater than or equal to 0
domain of 1/s(x)
s(x) not equal to 0
domain of ln(s(x))
s(x) greater than 0
lim f(x) as x approaches a exists if
lim f(x) as x approaches a from left = lim f(x) as x approaches a from right
cos pi/2, sin pi/2, tan pi/2
0, 1, undefined
cos pi/3, sin pi/3, tan pi/3
1/2, sqrt(3)/2, sqrt(3)
cos pi/4, sin pi/4, tan pi/4
sqrt(2)/2, sqrt(2)/2, 1
cos pi/6, sin pi/6, tan pi/6
sqrt(3)/2, 1/2, sqrt(3)/3
cos 0, sin 0, tan 0
1, 0, 0
y = a sin b(theta - c) + d
y = a cos b(theta - c) +d
a = amplitude, 2pi/b = pd, phase shift = c, vert shift = d
y = a tan b(theta - c) + d
abs val (a) = vert stretch, pi/b = pd, phase shift = c, vert shift = d
a³+b³
(a+b)(a²-ab+b²)
a³-b³
(a-b)(a²+ab+b²)
a²-b²
(a+b)(a-b)
(a+b)³
a³+3a²+3ab²+b³
(a-b)³
a³-3a²+3ab²-b³
(a+b)²
a²+2ab+b²
(a-b)²
a²-2ab+b²
double angle
sin 2 theta = 2 sin theta cos theta
cos 2 theta = cos²theta - sin²theta or 2cos²theta-1
sin (u +- v)
sin u cos v +- cos u sin v
cos (u +- v)
cos u cos v +- sin u sin v
def of derivative f(x) at (x, f(x))
lim as change x approaches 0 = [f(x + change x)-f(x)]/change x
derivative of f(x) at (c, f(c)) at specific point
lim as x approaches c = [f(x)-f(c)]/x-c
d/dx u^n
nu^n-1 (u’)
slope of curve at a point
= slope of the line tangent to the curve at that point
s’’(t) = v’(t) = a(t)
acceleration function
s’(t) = v(t) = f a(t)dt
velocity function
s(t) = f v(t)
position function
d/dx [uv]
u’v+v’u
d/dx [u/v]
(u’v - v’u)/v²
d/dx [u+-v]
u’ +- v’
d/dx [ln u]
u’/u = u’(1/u)
d/dx [e^u]
e^u u’
d/dx [log a u]
u’ / (ln a)u
d/dx [a^u]
(ln a)a^u u’
d/dx [sin u]
cos u u’
d/dx [cos u]
-sin u u’
d/dx [tan u]
sec²u u’
d/dx [cot u]
-csc²u u’
d/dx [sec u]
sec u tan u u’
d/dx [csc u]
-csc u cot u u’
find HA
m greater than n, no HA
m less than n, HA is y = 0
m = n, HA is y = a/b
polar to rectangular
x = r cos theta
y = r sin theta
rectangular to polar
theta = tan^-1 (y/x)
r = sqrt(x²+y²)
trig form of complex num
z = r(cos theta + i sin theta)
z = r cis theta
d/dx [arc sin u]
u’ / sqrt(1-u²), u not equal to 1
d/dx [arc cos u]
-u’ / sqrt(1-u²), u not equal to +-1
d/dx [arc tan u]
u’ / 1 + u²
d/dx [arc cot u]
-u’ / 1 + u²
d/dx [arc sec u]
u’ / abs val(u) sqrt(u² - 1), u not equal to +- 1, 0
d/dx [arc csc u]
-u’ / abs val(u) sqrt(u²-1), u not equal to +- 1, 0
(f^-1 (x))’ =
1/f’(f^-1(x)) = 1/(f’ o f^-1)(x)