Equations for Vector Calculus Final (Ch 5.5-5?.?

0.0(0)
studied byStudied by 1 person
0.0(0)
call with kaiCall with Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/20

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced
Call with Kai

No study sessions yet.

21 Terms

1
New cards

Polar Double Integrals

\iint f\left(x,y\right)dA=\int_{\alpha}^{\beta}\int_{h_1\left(\theta\right)}^{h_2\left(\theta\right)}f\left(r,\theta\right)rdrd\theta

2
New cards

Cylindrical Triple Integrals (Could be rewritten for any integration order)

\int_{\alpha}^{\beta}\int_{v_1\left(\theta\right)}^{v_2\left(\theta\right)}\int_{u_1\left(r,\theta\right)}^{u_2\left(r,\theta\right)}f\left(r,\theta,z\right)rdzdrd\theta

3
New cards

Spherical Triple Integrals (Could be rewritten for any integration order)

\int_{\psi}^{\delta}\int_{v_1\left(\varphi\right)}^{v_2\left(\varphi\right)}\int_{u_1\left(\theta,\varphi\right)}^{u_2\left(\theta,\varphi\right)}f\left(\rho,\theta,\varphi\right)\rho^2\sin\left(\varphi\right)d\rho d\theta d\varphi

4
New cards

2 Dimensional Total Mass

m=\iint_R\rho\left(x,y\right)dA

5
New cards

3 Dimensional Total Mass

m=\iiint_Q\rho\left(x,y\right)dV

6
New cards

Moment About the X-Axis

M_{x}=\iint_{R}\rho\left(x,y\right)ydA

7
New cards

Moment About the Y-Axis

M_{y}=\iint_{R}\rho\left(x,y\right)xdA

8
New cards

2 Dimensional Center of Mass

\overline{x}=\frac{M_{y}}{m},\overline{y}=\frac{Mx}{m}_{}

9
New cards

2 Dimensional X-Axis Moment of Inertia

I_{x}=\iint_{R}\rho\left(x,y\right)y^2dA

10
New cards

2 Dimensional Y-Axis Moment of Inertia

I_{y}=\iint_{R}\rho\left(x,y\right)x^2dA

11
New cards

2 Dimensional Polar Moment of Inertia

I=I_{x}+I_{y}

12
New cards

Moment About the XY-Plane

M_{xy}=\iiint_{Q}\rho\left(x,y\right)zdV

13
New cards

Moment About the YZ-Plane

M_{yz}=\iiint_{Q}\rho\left(x,y\right)xdV

14
New cards

Moment About the XZ-Plane

M_{xz}=\iiint_{Q}\rho\left(x,y\right)ydV

15
New cards

3 Dimensional Center of Mass

\overline{x}=\frac{M_{yz}}{m},\overline{y}=\frac{M_{xz}}{m},\overline{z}=\frac{M_{xy}}{m}_{}

16
New cards

3 Dimensional X-Axis Moment of Inertia

I_{x}=\iiint_{Q}\left(y^2+z^2\right)\rho\left(x,y\right)dV

17
New cards

3 Dimensional Y-Axis Moment of Inertia

I_{y}=\iiint_{Q}\left(x^2+z^2\right)\rho\left(x,y\right)dV

18
New cards

3 Dimensional Z-Axis Moment of Inertia

I_{z}=\iiint_{Q}\left(x^2+y^2\right)\rho\left(x,y\right)dV

19
New cards

Change in Variable

\left(x,y\right)=T\left(u,v\right)=\left(g\left(u,v\right),h\left(u,v\right)\right)

20
New cards

Jacobian

J = \frac{\partial(x,y)}{\partial(u,v)} = \det \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix}

21
New cards

Change in Variable in Multiple Integration

\iint_{R}f\left(x,y\right)dA=\iint_{S}f\left(u,v\right)\left\vert J\right\vert dudv