1/33
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Pythagorean Identity for Sine and Cosine
sin^2x + cos^2x = 1
Pythagorean Identity for Tangent and Secant
1 + tan^2x = sec^2x
Pythagorean Identity for Cotangent and Cosecant
1 + cot^2x = csc^2x
Quotient Identity of Tangent
sinx/cosx
Quotient Identity of Cotangent
cosx/sinx
Reciprocal Identity of Sine
1/cscx
Reciprocal Identity of Cosecant
1/sinx
Reciprocal Identity of Cosine
1/secx
Reciprocal Identity of Secant
1/cosx
Reciprocal Identity of Tangent
1/cotx
Reciprocal Identity of Cotangent
1/tanx
Sum of Two Angles Sine
sin(A+B) = sinAsinB + cosAcosB
Difference of Two Angles Sine
sin(A-B) = sinAsinB - cosAcosB
Sum of Two Angles Cosine
cos(A+B) = cosAcosB - sinAsinB
Difference of Two Angles Cosine
cos(A-B) = cosAcosB + sinAsinB
Sum of Two Angles Tangent
tan(A+B) = [tanA + tanB] / [ 1 - tanAtanB]
Difference of Two Angles Tangent
tan(A-B) = [tanA - tanB] / [ 1 + tanAtanB]
Double Angle: sin2x
2sinxcosx
Double Angle: tan2x
[2tanx] / [ 1- tan^2 x ]
Double Angle: cos2x
cos^2 x - sin^2 x
(Derivation) Double Angle: cos2x
1- 2sin^2 x
Negative Angle Formula: sin (-x)
-sinx
Negative Angle Formula: cos (-x)
cosx
Negative Angle Formula: tan (-x)
-tanx
Negative Angle Formula: csc (-x)
-cscx
Negative Angle Formula: sec (-x)
secx
Negative Angle Formula: cot (-x)
-cotx
Power Reducing Identity: sin^2 x
sin^2 x = [1 - cos (2x)] / 2
Power Reducing Identity: cos^2 x
cos^2 x = [1 + cos (2x)] / 2
Power Reducing Identity: tan^2 x
[ 1 - cos (2x)] / [ 1 + cos (2x)]
Half Angle Formula for Sine
+/- square root of [ ( 1 - cosx ) / 2 ]
Half Angle Formula for Cosine
+/- square root of [ ( 1 + cosx ) / 2 ]
Half Angle Formula for Tangent
+/- square root of [( 1-cosx) / (1 + cosx)]
(Derivation) Half Angle Formula for Tangent
sinx / (1 + cos x)