1/10
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced | Call with Kai |
|---|
No study sessions yet.
since d/dx[c]=0
∫0dx=C
since d/dx[Kx]=K
∫Kdx=Kx+C
since d/dx[Kf(x)]=Kf’(x)
∫Kf(x)=K∫f(x)dx=Kf(x)+C
since d/dx[f(x)±g(x)]= f’(x)±g’(x)
∫f’(x)±g’(x)dx=f(x)±g(x)+C
since d/dx[x^n]=nx^n-1
∫x^ndx= (x^n+1)/x+1 + C
since d/dx[sinx]= cosx
∫cosxdx=sinx + C
since d/dx[cosx]= -sinx
∫sinxdx= -cosx + C
since d/dx[tanx]=sec²x
∫sec²xdx= tanx + C
since d/dx[secx]=secxtanx
∫secxtanxdx = secx + C
since d/dx[cscx]= -cscxcotx
∫cscxcotx dx = -cscx + C
since d/dx[cotx] = -csc²x
∫csc²xdx = -cotx + C