math (fweak my life)

0.0(0)
studied byStudied by 0 people
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/44

flashcard set

Earn XP

Description and Tags

this will be $20 per slide pls

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

45 Terms

1
New cards

average rate of change (AROC)- slope between two points

\frac{f\left(b\right)-f\left(a\right)}{b-a}

2
New cards

inst. rate of change (IROC)- slope at a single point

f\text{'(c)}

3
New cards

mean value thm for a function: f\text{'(c)}=

\frac{f\left(b\right)-f\left(a\right)}{b-a}

4
New cards

rolles thm: if f(a)=f(b) then f’(c)=

0

5
New cards

average value of a function: f_{avg} =

\frac{\int_{a}^{b}\!f\left(x\right)\,dx}{b-a}

6
New cards

intermediate value thm: a function f(x) that is continuous on [a,b]

takes on every y-value between f(a) and f(b)

7
New cards

extreme value thm: if f(x) is continuous on [a,b]

then f(x) must have both an absolute min and absolute max on interval [a,b]

8
New cards

arc length (cartesian)

\int_{a}^{b}\!\sqrt{1+\left(\frac{dy}{dx}\right)^2}\,dx

9
New cards

arc length (parametric)

\int_{t_1}^{t_2}\!\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2}dt

10
New cards

speed

\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2}\,

11
New cards

total distanced travelled

\int_{t_1}^{t_2}\!\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2}dt

12
New cards

polar area

\frac12\int_{\theta_1}^{\theta_2}\!r^2\,d\theta

13
New cards

\frac{dy}{dx}=

\frac{\frac{dy}{dt}}{\frac{dx}{dt}}

14
New cards

\frac{d^2y}{dx^2} =

\frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}

15
New cards

r²=

x²+y²

16
New cards

x=

r\cos\theta

17
New cards

y=

r\sin\theta

18
New cards

\theta =

\arctan\frac{y}{x}

19
New cards

Area of a trapezoid: A=

\frac12h\left(b_1+b_2\right)

20
New cards

\frac{d}{dx}x^{n} =

nx^{n-1}

21
New cards

\frac{d}{dx}\ln x =

1/x

22
New cards

\frac{d}{dx}\log_{b}x =

\frac{1}{x\ln b}

23
New cards

\frac{d}{dx}e^{x} =

e^{x}

24
New cards

\frac{d}{dx}b^{x} =

b^{x}\cdot\ln b

25
New cards

\frac{d}{dx}\sin x =

cosx

26
New cards

\frac{d}{dx}\cos x =

-sinx

27
New cards

\frac{d}{dx}\tan x =

\sec^2x

28
New cards

\frac{d}{dx}\sec x =

\sec x\cdot\tan x

29
New cards

\frac{d}{dx}\arcsin x =

\frac{1}{\sqrt{1-x^2}}

30
New cards

\frac{d}{dx}\arccos x =

- \frac{1}{\sqrt{1-x^2}}

31
New cards

\frac{d}{dx}\arctan x =

\frac{1}{1+x^2}

32
New cards

definition of a derivative: f’(x)=

\lim_{h\overrightarrow{}0}\frac{f\left(x+h\right)-f\left(x\right)}{h}

33
New cards

product rule: \frac{d}{dx}\left(f\cdot g\right) =

[f’(x)g(x)]+[g’(x)f(x)]

34
New cards

quotient rule: \frac{d}{dx}\left(\frac{f}{g}\right) =

\frac{\left\lbrack f^{\prime}\left(x\right)g\left(x\right)\right\rbrack-\left\lbrack g^{\prime}\left(x\right)f\left(x\right)\right\rbrack}{g^2}

35
New cards

chain rule: \frac{d}{dx}f\left(g\left(x\right)\right) =

f^{\prime}\left(g\left(x\right)\right)\cdot g^{\prime}\left(x\right)

36
New cards

37
New cards
38
New cards
39
New cards
40
New cards
41
New cards
42
New cards
43
New cards
44
New cards
45
New cards