1/44
this will be $20 per slide pls
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
average rate of change (AROC)- slope between two points
\frac{f\left(b\right)-f\left(a\right)}{b-a}
inst. rate of change (IROC)- slope at a single point
f\text{'(c)}
mean value thm for a function: f\text{'(c)}=
\frac{f\left(b\right)-f\left(a\right)}{b-a}
rolles thm: if f(a)=f(b) then f’(c)=
0
average value of a function: f_{avg} =
\frac{\int_{a}^{b}\!f\left(x\right)\,dx}{b-a}
intermediate value thm: a function f(x) that is continuous on [a,b]
takes on every y-value between f(a) and f(b)
extreme value thm: if f(x) is continuous on [a,b]
then f(x) must have both an absolute min and absolute max on interval [a,b]
arc length (cartesian)
\int_{a}^{b}\!\sqrt{1+\left(\frac{dy}{dx}\right)^2}\,dx
arc length (parametric)
\int_{t_1}^{t_2}\!\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2}dt
speed
\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2}\,
total distanced travelled
\int_{t_1}^{t_2}\!\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2}dt
polar area
\frac12\int_{\theta_1}^{\theta_2}\!r^2\,d\theta
\frac{dy}{dx}=
\frac{\frac{dy}{dt}}{\frac{dx}{dt}}
\frac{d^2y}{dx^2} =
\frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}
r²=
x²+y²
x=
r\cos\theta
y=
r\sin\theta
\theta =
\arctan\frac{y}{x}
Area of a trapezoid: A=
\frac12h\left(b_1+b_2\right)
\frac{d}{dx}x^{n} =
nx^{n-1}
\frac{d}{dx}\ln x =
1/x
\frac{d}{dx}\log_{b}x =
\frac{1}{x\ln b}
\frac{d}{dx}e^{x} =
e^{x}
\frac{d}{dx}b^{x} =
b^{x}\cdot\ln b
\frac{d}{dx}\sin x =
cosx
\frac{d}{dx}\cos x =
-sinx
\frac{d}{dx}\tan x =
\sec^2x
\frac{d}{dx}\sec x =
\sec x\cdot\tan x
\frac{d}{dx}\arcsin x =
\frac{1}{\sqrt{1-x^2}}
\frac{d}{dx}\arccos x =
- \frac{1}{\sqrt{1-x^2}}
\frac{d}{dx}\arctan x =
\frac{1}{1+x^2}
definition of a derivative: f’(x)=
\lim_{h\overrightarrow{}0}\frac{f\left(x+h\right)-f\left(x\right)}{h}
product rule: \frac{d}{dx}\left(f\cdot g\right) =
[f’(x)g(x)]+[g’(x)f(x)]
quotient rule: \frac{d}{dx}\left(\frac{f}{g}\right) =
\frac{\left\lbrack f^{\prime}\left(x\right)g\left(x\right)\right\rbrack-\left\lbrack g^{\prime}\left(x\right)f\left(x\right)\right\rbrack}{g^2}
chain rule: \frac{d}{dx}f\left(g\left(x\right)\right) =
f^{\prime}\left(g\left(x\right)\right)\cdot g^{\prime}\left(x\right)