Ap Calculus Formula Test

0.0(0)
studied byStudied by 14 people
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/53

flashcard set

Earn XP

Description and Tags

FOR THE FELLOW AP CALC PEEPS

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

54 Terms

1
New cards
d/dx (x^n)= ____________
nx^n-1
2
New cards
d/dx (fg)= ____________
f’(g(x))g’(x)
3
New cards
d/dx (f/g)= ____________
f(g^-1)
4
New cards
d/dx f(u)= ____________
f‘(u)u’
5
New cards
d/dx (e^u)= ____________
e^u
6
New cards
d/dx (a^u)= ____________
a^ulna
7
New cards
d/dx (ln u)= ____________
u’/u
8
New cards
d/dx (log _*a*_ u)= ____________
1/xlna
9
New cards
d/dx (sin u)= ____________
cosu
10
New cards
d/dx (cos u)= ____________
\-sinu
11
New cards
d/dx (tan u)= ____________
sec^2u
12
New cards
d/dx (cot u)= ____________
\-csc^2u
13
New cards
d/dx (sec u)= ____________
sec u tan u
14
New cards
d/dx (csc u)= ____________
\-csc x cot x
15
New cards
d/dx (arcsin x)= ____________
1/√1-x^2
16
New cards
d/dx (arctan x)= ____________
1/1+x^2
17
New cards
∫ a dx\= \____________
a∫dx → a(x+c_1) → ax + ac_1 → ax + c
18
New cards
∫ x^n dx= ____________
x^n+1/n+1 + c
19
New cards
∫ dx\= \____________
x + c
20
New cards
∫ u'/u dx= ____________
ln|u| + c
21
New cards
∫ e^x dx= ____________
e^x + c
22
New cards
∫ a^x dx= ____________
a^x/lna + c
23
New cards
∫ sin x dx\= \____________
\-cos x + c
24
New cards
∫ cos x dx\= \____________
sin x + c
25
New cards
∫ tan x dx\= \____________
\-ln |cosx| + c
26
New cards
∫ cot x dx\= \____________
ln|sinx| + c
27
New cards
∫ sec^2 x dx= ____________
tan x + c
28
New cards
∫ sec x tan x dx\= \____________
sec x + c
29
New cards
∫ csc^2 x dx= ____________
\-cot x + c
30
New cards
∫ csc x cot x dx\= \____________
\-csc x + c
31
New cards
∫ u'/a^2+u^2 dx= ____________
1/a arctan u/a + c
32
New cards
∫ u'/ √a^2-u^2 dx= ____________
arcsin u/a + c
33
New cards
Fundamental Theorem of Calculus:

∫ab f'(x)dx=_________
f(b) -f(a)
34
New cards
Second Fundamental Theorem of Calculus:

d/dx ∫uv f(t)dt=_________
f(v)v’ - f(u)u’
35
New cards
Area Between 2 Curves

For functions of x:

**A=**

________ curve - _______ curve
A= ∫a/b {f(x) - g(x)} dx

top - bottom
36
New cards
Area Between 2 Curves

For functions of y:

**A=**

________ curve - _______ curve
A= ∫a/b \[f(y) - g(y)\]dy

right curve - left curve
37
New cards
Volumes of Revolution:

Disks-

V=
v= 𝝅∫a/b r^2 dx (or dy)

\
38
New cards
Volumes of Revolution:

Washers-

V=
v=𝝅∫a/b(R^2 - r^2) dx (or dy)

\
39
New cards
Volumes of known Cross Sections

V=
V= ∫a/b Adx or dy where A represents the area of a representative cross section
40
New cards
Position-Velocity-Acceleration

d/dt s(t)=
v(t)
41
New cards
Position-Velocity-Acceleration

d/dt v(t)=
a(t)
42
New cards
Position-Velocity-Acceleration

∫ a(t)dt=
v(t) + c
43
New cards
Position-Velocity-Acceleration

∫ v(t)dt=
s(t) + c
44
New cards
Position-Velocity-Acceleration

Speed = ___________
|v(t)|
45
New cards
Position-Velocity-Acceleration

Displacement = ___________
∫a/b v(t) dt
46
New cards
Position-Velocity-Acceleration

Total Distance Traveled
∫a/b |v(t)|dt
47
New cards
Tangent Line: \________________________
y-y_1 = m(x-x_1)
48
New cards
First Derivative Test:

f is increasing when: _______
f’(x) > 0
49
New cards
First Derivative Test:

f is decreasing when: _______
f’(x) < 0
50
New cards
Points of Inflection:

f is concave upward when: __________
f’’(x) > 0
51
New cards
Points of Inflection:

f is concave downward when: ___________
f’’(x) < 0
52
New cards
Average Value of a Function: favg\= \_____________
favg = ∫a/b f(x) dx / b-a
53
New cards
Average Rate of Change: AROC\= \_____________
m= f(b) - f(a) / b-a
54
New cards
Instantaneous Rate of Change: IROC\= \_____________
Use the derivative (slope at one point)