1/69
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
|---|
No study sessions yet.
What is an antiderivative?
A function F whose derivative is f (F' = f)
What is the general form of an indefinite integral?
F(x) + C
What is the integral of k with respect to x?
kx + C
Compute ∫ x² dx.
x³/3 + C
Compute ∫ (3x² − 4x + 1) dx.
x³ − 2x² + x + C
What is the derivative of an integral?
By FTC: d/dx ∫_a^x f(t) dt = f(x)
State the Fundamental Theorem of Calculus (Part 1).
∫_a^b f'(x) dx = f(b) − f(a)
State the Fundamental Theorem of Calculus (Part 2).
If F' = f, then ∫_a^b f(x) dx = F(b) − F(a)
Evaluate ∫₀³ (2x) dx.
9
Evaluate ∫₁⁴ (1/x) dx.
ln(4)
Compute ∫ (1/(x ln x)) dx.
ln|ln x| + C
Find ∫ e^(3x) dx.
(1/3)e^(3x) + C
Find ∫ cos(5x) dx.
(1/5) sin(5x) + C
Find ∫ sec²(2x) dx.
(1/2) tan(2x) + C
Compute ∫ (1/(1+x²)) dx.
arctan(x) + C
Evaluate ∫ (1/√(1−x²)) dx.
arcsin(x) + C
Evaluate ∫ 2x(3x² + 1)^5 dx.
(3x² + 1)^6/3 + C
What substitution is used for √(a² − x²)?
x = a sin θ
What substitution is used for √(a² + x²)?
x = a tan θ
What substitution is used for √(x² − a²)?
x = a sec θ
Compute ∫₀¹ (x³ + 2) dx.
(1/4) + 2
Conceptually, what does a definite integral represent?
Net area between curve and x-axis
When is the area between curve and x-axis negative?
When f(x) < 0
Compute the area under y = 4 − x² from x = 0 to x = 2.
16/3
Find the area between y = x and y = x² on [0,1].
1/6
What is the disk method formula for volume?
V = π ∫ (R(x))² dx
What is the washer method formula for volume?
V = π ∫ [R(x)² − r(x)²] dx
What is the shell method formula for volume?
V = 2π ∫ (radius)(height) dx
Find volume of a solid formed by rotating y = x² around the x-axis on [0,2].
8π/5
Find volume using shells for region under y = x rotated around y-axis on [0,3].
27π/2
Compute ∫ (1/x³) dx.
-1/(2x²) + C
Compute ∫ tan x dx.
−ln|cos x| + C
Compute ∫ cot x dx.
ln|sin x| + C
Compute ∫ sec x dx.
ln|sec x + tan x| + C
Compute ∫ csc x dx.
ln|csc x − cot x| + C
Compute ∫ ln x dx.
x ln x − x + C
Compute ∫ x e^x dx.
x e^x − e^x + C
Compute ∫ x cos x dx.
x sin x + cos x + C
Compute ∫ e^x sin x dx.
(1/2)e^x(sin x − cos x) + C
Evaluate ∫₁^e (ln x) dx.
e − 1
Evaluate ∫₀^∞ e^(−x) dx.
1
Determine if ∫₁^∞ (1/x²) dx converges.
Yes (equals 1)
Determine if ∫₁^∞ (1/x) dx converges.
No (diverges)
Compute ∫₀^∞ e^(−2x) dx.
1/2
Compute ∫₀^4 |2x − 4| dx.
8
Find ∫ (3x − 4)(x² − 1) dx.
(3/4)x⁴ − 2x³ − (3/2)x² + 4x + C
Differentiate ∫₀^x (t² + 1) dt.
x² + 1
Find ∫ (1/(√x + 1)) dx.
2√x − ln|√x − 1| + C
Find ∫ (x / √(4 − x²)) dx.
−√(4 − x²) + C
Find ∫ (x² / (1 + x³)) dx.
(1/3) ln|1 + x³| + C
Compute d/dx [ ∫₁^{x²} ln t dt ].
2x ln(x²)
Find ∫ e^(−x²) dx.
No elementary antiderivative (Error function)
Compute ∫ 4/(x² + 4) dx.
2 arctan(x/2) + C
Compute ∫ 6x/(x² + 9) dx.
3 ln(x² + 9) + C
Compute ∫ (5/(√(25 − x²))) dx.
5 arcsin(x/5) + C
Find ∫ sin³x dx.
−cos x + (1/3)cos³x + C
Find ∫ cos³x dx.
sin x − (1/3) sin³x + C
Find ∫ sec³x dx.
(1/2)(sec x tan x + ln|sec x + tan x|) + C
Compute ∫ x√(x+1) dx.
(2/15)(x+1)^(5/2)(3x−2) + C
Find ∫ (1/(x² − 4)) dx.
(1/4) ln|(x−2)/(x+2)| + C
Evaluate ∫₀^1 (1/(1+x³)) dx.
No elementary antiderivative (leave as integral)
Find ∫ dx/(x(ln x)²).
−1/ln x + C
Find ∫ e^(2x) sin(3x) dx.
(e^(2x)(2 sin 3x − 3 cos 3x))/13 + C
Find the integral that represents the arclength of y = x² on [0,2].
∫₀² √(1 + (2x)²) dx
Find ∫ (d/dx)(x³ e^{2x}) dx.
x³ e^{2x} + C
Compute ∫ (1/(x³ + 1)) dx.
Partial fractions required
Conceptually, what is an improper integral?
An integral where limits or integrand are infinite
Determine if ∫₀^∞ (1/(1 + x²)) dx converges.
Yes (equals π/2)
Determine if ∫₀^∞ x e^(−x) dx converges.
Yes (equals 1)