1/19
Name | Mastery | Learn | Test | Matching | Spaced |
|---|
No study sessions yet.
Mean (Expected Value)
(mu = E(X))
Discrete Variable (Mean)
mu = sum x,P(X=x)
Discrete Variable (Variance/SD)
sigma^2 = sum (x-mu)^2 P(X=x)
Standard Deviation (Random Variables)
sigma = sqrt{sigma^2}
Mean of X +- Y
mu(x) +- mu(y)
Variance of X +- Y
sqrt{(sigma(x)²) + (sigma(y)²)}
z-score (norm distribution)
x - mu / sigma
reverse z score
mu + z(sigma)
continuous random variable (PDF)
P(a < X < b) = ∫ab f(x) dx
continuous random variable (CDF)
f(x) = P(X<= x)
Binomial Distribution (Probability)
P(X = x) = (n x)p^x(1-p)^n-x
Binomial Distribution (Mean)
mu = np
Binomial Distribution (Variance/SD)
sigma = sqrt{np(1-p)}
Binomial Coefficient
(n x) = n! / x!(n-x)!
Geometric Distribution (Probability)
P(X = x) = (1-p)^x-1p
Geometric Distribution (Mean)
mu = 1/p
Geometric Distribution (Variance/SD)
sigma = sqrt{1-p} / p
Sampling Distributions and Standard Error
SE(xbar) = sigma/sqrt{n}
The 10% condition
n <= .10N