Equations for Vector Calculus Exam 1 (Ch 1.1-3.2)

0.0(0)
studied byStudied by 7 people
0.0(0)
call with kaiCall with Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/39

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced
Call with Kai

No study sessions yet.

40 Terms

1
New cards

Parametric Equation

x=at+x_0

y=bt+y_0

z=ct+z_0

2
New cards

Resolve the Parametric Parameter

y=\left(\frac{x-x0}{a}_{}\cdot b\right)+y_0

3
New cards

Slope of a Parametric Line

\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{y^{\prime}\left(t\right)}{x^{\prime}\left(t\right)}

4
New cards

Second Derivative of a Parametric Line

\frac{d^2y}{dx^2}=\frac{\frac{d}{dt}\cdot\frac{dy}{dx}}{\frac{dx}{dt}}

5
New cards

Tangent Line of a Parametric Curve at (x0, y0)

y-y_0=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}\left(x-x_0\right)

6
New cards

Area under a Parametric Curve

A=\int_{a}^{b}\!y\left(t\right)\cdot x^{\prime}\left(t\right)\,dt

7
New cards

Arclength of a Parametric Curve

s=\int_{a}^{b}\!\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2}\,dt

8
New cards

Surface Generated by a Parametric Curve Rotated around the x-axis

SA=2\pi\int_{a}^{b}\!y\left(t\right)\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2}\,dt  

9
New cards

Rectangular to Polar Conversion

x=r\cos\left(\theta\right)

y=r\sin\left(\theta\right)

10
New cards

Polar to Rectangular Conversion

r=\sqrt{x^2+y^2}

\theta=\tan^{-1}\left(\frac{y}{x}\right)

11
New cards

Area of a Polar Curve

A=\frac12\int_{\alpha}^{\beta}\!r^2\,d\theta=\frac12\int_{\alpha}^{\beta}\!\left(f\left(\theta\right)\right)^2d\theta

12
New cards

Arclength of a Polar Curve

s=\int_{\alpha}^{\beta}\!\sqrt{\left(r\right)^2+\left(\frac{dr}{d\theta}\right)^2}\,d\theta=\int_{\alpha}^{\beta}\!\sqrt{\left(f\left(\theta\right)\right)^2+\left(f^{\prime}\left(\theta\right)\right)^2}\,

13
New cards

Distance Equation

d=\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2+\left(z_2-z_1\right)^2}

14
New cards

Equation of a Sphere

\left(x-a\right)^2+\left(y-b\right)^2+\left(z-c\right)^2=r^2

15
New cards

Dot Product

X\cdot Y=\left(\left(x_1\cdot x_2\right)+\left(y_1\cdot y_2\right)+\left(z_1\cdot z_2\right)\right)

16
New cards

Cross Product

X\times Y=\left(x_2y_3-y_2x_3\right)i+\left(x_3y_1-x_1y_3\right)j+\left(x_1y_2-x_2y_1\right)k

17
New cards

Orthogonal Projection

Proj_{U}V=\frac{U\cdot V}{\left\Vert U\right\Vert^2}\cdot U

18
New cards

Area of a Parallelogram made by Vectors: PQ & PR

A=PQ\times PR

19
New cards

Area of a Triangle made by Vectors: PQ & PR

A=\frac12\left(PQ\times PR\right)

20
New cards

Symmetric Equation of Parametric Lines

\frac{x-x_0}{a}=\frac{y-y_0}{b}=\frac{z-z_0}{c}

21
New cards

Triple Scalar Product (Volume of a Parallelepiped)

U\cdot\left(V\times W\right)=\left(u_1v_2w_3+u_2v_3w_1+u_3v_1w_2\right)-\left(u_3v_2w_1+u_2v_1w_3+u_1v_3w_2\right)

22
New cards

Distance from a Point to a Line

d=\frac{PM\times V}{\left\Vert V\right\Vert}

Point M is given and point P is on the given vector V

23
New cards

Equation of a Plane

a\left(x-x_0\right)+b\left(y-y_0\right)+c\left(z-z_0\right)=0=ax+by+cz+d

24
New cards

Direction of the Normal Vector

N=\left(a,b,c\right)

25
New cards

Distance between a Point and Plane

d=\frac{\left\vert PQ\cdot N\right\vert}{\left\Vert N\right\Vert}

(Point Q is given and P is a point on the given normal vector N)

26
New cards

Angle Between 2 Planes

\cos\left(\theta\right)=\frac{\left\vert N_1\cdot N_2\right\vert}{\left\Vert N_1\right\Vert\left\Vert N_2\right\Vert}

27
New cards

Intersection of Two Planes

Put both planes into a matrix, solve the matrix via elimination, find parametric relationship relating x,y, and z. Put in a Parametric Equation

28
New cards

Cylindrical to Rectangular Conversion

x=r\cos\left(\theta\right) 

y=r\sin\left(\theta\right) 

z=z

29
New cards

Rectangular to Cylindrical Conversion

r=\sqrt{x^2+y^2}

\theta=\tan^{-1}\left(\frac{y}{x}\right)

z=z

30
New cards

Spherical to Rectangular Conversion

x=\rho\sin\left(\varphi\right)\cos\left(\theta\right)

y=\rho\sin\left(\varphi\right)\sin\left(\theta\right) 

z=\rho\cos\left(\varphi\right)

31
New cards

Spherical to Polar Conversion

r=\rho\sin\left(\varphi\right)

\theta=\theta

z=\rho\cos\left(\varphi\right)

32
New cards

Rectangular to Spherical Conversion

\rho=\sqrt{x^2+y^2+z^2}

\theta=\tan^{-1}\left(\frac{y}{x}\right) 

\varphi=\cos^{-1}\left(\frac{z}{\sqrt{x^2+y^2+z^2}}\right)

33
New cards

Polar to Spherical Conversion

\rho=\sqrt{r^2+z^2}

\theta=\theta 

\varphi=\cos^{-1}\left(\frac{z}{\sqrt{r^2+z^2}}\right)

34
New cards

Representation of Spherical Coordinates

rho=constant is a sphere

theta=constant is a plane

 phi=constant is a cone

35
New cards

Latitude and Longitude

phi=90 degrees-latitude (west is negative & vice versa)

36
New cards

Vector Valued Function

R\left(t\right)=f\left(t\right)i+g\left(t\right)j+h\left(t\right)k=\left(f\left(t\right),g\left(t\right),h\left(t\right)\right)

37
New cards

Limit of a Vector Valued Function

\lim_{t\rightarrow a}R\left(t\right)=\left(\lim_{t\rightarrow a}f\left(t\right),\lim_{t\rightarrow a}g\left(t\right),\lim_{t\rightarrow a}h\left(t\right)\right)

38
New cards

Derivative of a Vector Valued Function

\frac{d}{dt}R\left(t\right)=\left(\frac{d}{dt}f\left(t\right),\frac{d}{dt}g\left(t\right),\frac{d}{dt}h\left(t\right)\right)

39
New cards

Integral of a Vector Valued Function

\int_{a}^{b}\!R\left(t\right)\,dt=\left(\int_{a}^{b}\!f\left(t\right)\,dt,\int_{a}^{b}\!g\left(t\right)\,dt,\int_{a}^{b}\!h\left(t\right)\,dt\right)

40
New cards

Unit Tangent Vector of a Vector Valued Function

T\left(t\right)=\frac{R^{\prime}\left(t\right)}{\left\Vert R^{\prime}\left(t\right)\right\Vert}