1/15
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
DeMorgan's Laws
¬(p ∧ q) == ¬p ∨ ¬q
¬(p ∨ q) == ¬p ∧ ¬q
Double Negation Law
¬[¬p] == p
Implication Law
p → q == ¬p ∨ q
Contrapositive
p → q == ¬q → ¬p
Negation of Implication
¬(p → q) == p ∧ ¬q
Identity Laws
p ∨ F == p
p ∧ T == p
Commutative Laws
p ∨ q == q ∨ p
p ∧ q == q ∧ p
Associative Laws
(p ∨ q) ∨ r == p ∨ (q ∨ r)
(p ∧ q) ∧ r == p ∧ (q ∧ r)
Distributive Laws
p ∧ (q ∨ r) == (p ∧ q) ∨ (p ∧ r)
p ∨ (q ∧ r) == (p ∨ q) ∧ (p ∨ r)
Domination Laws
p ∨ T == T
p ∧ F == F
Idempotent Laws
p ∨ p == p
p ∧ p == p
Absorption Laws
p ∧ (p ∨ q) == p
p ∨ (p ∧ q) == p
Tautology
p ∨ ¬p == T
Contradiction
p ∧ ¬p == F
Equivalence
(p → q) ∧ (q → p) == (p ↔ q)
Universal Instantiation
∀xP(x)
------------
P(c)