1/53
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
|---|
No study sessions yet.
component form
v = <q1-p1, q2-p2> = <v1,v2>
magnitude
||v|| = sqrt(v12+v22+v32)
vector addition
u + v = <u1+v1,u2+v2>
scalar multiplication
cu = <cu1,cu2>
unit vector
a vector with a magnitude of 1
u = v / ||v||
triangle inequality
||u+v|| </= ||u|| + ||v||
distance
the distance between points (x1,y1,z1) and (x2,y2,z2)
d = sqrt[(x2-x1)2+(y2-y1)2+(z2-z1)2]
midpoint formula
average of two points
M = [(x1+x2 / 2), y1+y2 / 2), z1+z2 / 2)]
equation of a sphere
(x-x1)2 + (y-y1)2 + (z-z1)2= r2
dot product
u ⋅ v = u1v1+u2v2+u3v3
angle between two vectors
cosθ = u ⋅ v / ||u|| ||v||
vector projection
projvu = (u ⋅ v / ||v||2) * v
Work
the work W done by a constant force F moving an object along the vector PQ
W = F⋅ PQ
Cross product
u x v = |matrix|=(u2v3 - u3v2) i - (u1v3 - u3v1) j + (u1v2 - u2v1) k
*the resulting vector u x v is orthogonal to both u and v
geometric idea
the magnitude of the cross product is the area of the parallelogram
||u x v|| = ||u|| ||v|| sin\theta
triple scalar product
V = | u ⋅ (v x w) |
parametric equations
x = x0 + at, y = y0 + bt, z = z0 + ct
symmetric equations
(x - x0) / a = (y - y0) / b = (z - z0) / c
standard (point-normal) form
a(x - x0) + b(y - y0) + c(z - z0) = 0
general form
ax + by + cz + d = 0
distance between a point and a plane
point P (x0,y0,z0) to the plane ax + by + cz + d = 0
D = |ax0+by0+cz0+d| / \sqrt{a^2+b^2+c^2}
distance between a point and a line in space
D = ||PQ x v|| / ||v||
ellipsoid
\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1
hyperboloid of one sheet
\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1
hyperboloid of two sheets
-\frac{x^2}{a^2}-\frac{y^2}{b^2}+\frac{z^2}{c^2}=1
elliptic cone
\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2}
elliptic paraboloid
z=\frac{x^2}{a^2}+\frac{y^2}{b^2}
hyperbolic paraboloid
z=\frac{y^2}{b^2}-\frac{x^2}{a^2}
coordinate conversion
cylindrical → rectangular: x = rcos\theta, y=rsin\theta, z=z
rectangular → cylinderical: r=\sqrt{x^2+y^2,}\tan\theta=\frac{y}{x},z=z
spherical → rectangular: x=\rho\sin\phi\cos\theta,y=\rho\sin\phi\sin\theta,z=\rho\cos\phi
rectangular → spherical: \rho=\sqrt{x^2+y^2+z^2},\tan\theta=\frac{y}{x},\phi=\arccos\left(\frac{z}{\sqrt{r^2+z^2}}\right)
cylindrical → spherical:
\rho=\sqrt{r^2+z^2},\theta=\theta,\phi=\arccos\left(\frac{z}{\sqrt{r^2+z^2}}\right)
spherical → cylindrical:r=\rho\sin\phi,\theta=\theta,z=\rho\cos\phi
projectile motion
r(t) = (-1/2gt2) j + tv0 + r0
unit tangent vector
T\left(t\right)=\frac{r^{\prime}\left(t\right)}{\left\Vert r^{\prime}\left(t\right)\right\Vert}
principal unit normal vector
N\left(t\right)=\frac{T^{\prime}\left(t\right)}{\left\Vert T^{\prime}\left(t\right)\right\Vert}
T\left(t\right)\cdot N\left(t\right)
partial derivatives
z=f\left(x,y\right)
fx(x,y) = \frac{\delta z}{\delta x}
fy(x,y) = \frac{\delta z}{\delta y}
limit definition partial derivatives
fx(x,y) =
\lim_{\Delta x\to0}\frac{f\left(x+\Delta x,y\right)-f\left(x,y\right)}{\Delta x}
fy(x,y) =
\lim_{\Delta y\to0}\frac{f\left(x,y+\Delta y\right)-f\left(x,y\right)}{\Delta y}
mixed partials
fxy(x,y)=fyx(x,y)
total differential
dz=fx\left(x,y\right)dx+fy\left(x,y\right)dy=\frac{\delta z}{\delta x}dx+\frac{\delta z}{\delta y}dy
approximation of differentials
\Delta z=fx\left(x0,y0\right)\Delta x+fy\left(x0,y0\right)\Delta y
chain rule
\frac{\delta z}{\delta s}=\frac{\delta z}{\delta x}\frac{\delta x}{\delta s}+\frac{\delta z}{\delta y}\frac{\delta y}{\delta s}
\frac{\delta z}{\delta t}=\frac{\delta z}{\delta x}\frac{\delta x}{\delta t}+\frac{\delta z}{\delta y}\frac{\delta y}{\delta t}
implicit partial derivatives
\frac{dy}{dx}=-\frac{Fx}{Fy}
gradient
∇f(x,y)=<fx(x,y),fy(x,y)>=fx i + fy j
directional derivative
Duf = ∇f⋅u = fxa + fyb + fzc
Duf = ||∇f||cosθ
tangent plane
Fx(P)(x-x0)+Fy(P)(y-y0)+Fz(P)(z-z0)=0
second partials test
D = fxx(a,b)fyy(a,b)-[fxy(a,b)]2
lagrange multipliers
\nabla f\left(x,y,z\right)=\lambda\nabla g\left(x,y,z\right) and g(x,y,z) = k
fx= \lambda gx
fy= \lambda gy
fz= \lambda gz
g(x,y,z)=k
iterated integrals
\int\int_{R}^{}\!f\left(x,y\right)\,dA
area a region R
A=\int\int_{R}^{}\!1\,dA
volume of a solid
V=\int\int_{R}^{}\!f\left(x,y\right)\,dA
integrals over dy dx
\int\int_{R}^{}\!f\left(x,y\right)dA=\int_{a}^{b}\!\int_{g1\left(x\right)}^{g2\left(x\right)}\!f\left(x,y\right)\,dydx
integrals over dx dy
\int\int_{R}^{}\!f\left(x,y\right)dA=\int_{c}^{d}\!\int_{h1\left(x\right)}^{h2\left(x\right)}\!f\left(x,y\right)\,dxdy
average value of a function
favg=
\frac{1}{Area\left(R\right)}\int\int_{R}^{}\!f\left(x,y\right)\,dA
change of variables to polar coordinates
x=r\cos\theta
y=r\sin\theta
x^2+y^2=r^2
dA=rdrd\theta
double integral polar form
\int\int_{R}^{}\!f\left(x,y\right)\,dA=\int\int_{R}^{}\!f\left(r\cos\theta,r\sin\theta\right)r\,drd\theta
vector curl
curlF\left(x,y,z\right)=\nabla x F(x,y,z)
vector divergence
∇ ⋅ F(x,y,z) =
\frac{\delta M}{\delta x}+\frac{\delta N}{\delta y}+\frac{\delta P}{\delta z}