AMS 261 Equations

0.0(0)
studied byStudied by 0 people
0.0(0)
full-widthCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/53

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

54 Terms

1
New cards

component form

v = <q1-p1, q2-p2> = <v1,v2>

2
New cards

magnitude

||v|| = sqrt(v12+v22+v32)

3
New cards

vector addition

u + v = <u1+v1,u2+v2>

4
New cards

scalar multiplication

cu = <cu1,cu2>

5
New cards

unit vector

  • a vector with a magnitude of 1

  • u = v / ||v||

6
New cards

triangle inequality

||u+v|| </= ||u|| + ||v||

7
New cards

distance

  • the distance between points (x1,y1,z1) and (x2,y2,z2)

  • d = sqrt[(x2-x1)2+(y2-y1)2+(z2-z1)2]

8
New cards

midpoint formula

  • average of two points

  • M = [(x1+x2 / 2), y1+y2 / 2), z1+z2 / 2)]

9
New cards

equation of a sphere

(x-x1)2 + (y-y1)2 + (z-z1)2= r2

10
New cards

dot product

u v = u1v1+u2v2+u3v3

11
New cards

angle between two vectors

cosθ = u v / ||u|| ||v||

12
New cards

vector projection

projvu = (u v / ||v||2) * v

13
New cards

Work

  • the work W done by a constant force F moving an object along the vector PQ

  • W = FPQ

14
New cards

Cross product

u x v = |matrix|=(u2v3 - u3v2) i - (u1v3 - u3v1) j + (u1v2 - u2v1) k

*the resulting vector u x v is orthogonal to both u and v

15
New cards

geometric idea

  • the magnitude of the cross product is the area of the parallelogram

  • ||u x v|| = ||u|| ||v|| sin\theta

16
New cards

triple scalar product

V = | u ⋅ (v x w) |

17
New cards

parametric equations

x = x0 + at, y = y0 + bt, z = z0 + ct

18
New cards

symmetric equations

(x - x0) / a = (y - y0) / b = (z - z0) / c

19
New cards

standard (point-normal) form

a(x - x0) + b(y - y0) + c(z - z0) = 0

20
New cards

general form

ax + by + cz + d = 0

21
New cards

distance between a point and a plane

  • point P (x0,y0,z0) to the plane ax + by + cz + d = 0

  • D = |ax0+by0+cz0+d| / \sqrt{a^2+b^2+c^2}

22
New cards

distance between a point and a line in space

D = ||PQ x v|| / ||v||

23
New cards

ellipsoid

\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1

24
New cards

hyperboloid of one sheet

\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1

25
New cards

hyperboloid of two sheets

-\frac{x^2}{a^2}-\frac{y^2}{b^2}+\frac{z^2}{c^2}=1

26
New cards

elliptic cone

\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2}

27
New cards

elliptic paraboloid

z=\frac{x^2}{a^2}+\frac{y^2}{b^2}

28
New cards

hyperbolic paraboloid

z=\frac{y^2}{b^2}-\frac{x^2}{a^2}

29
New cards

coordinate conversion

cylindrical → rectangular: x = rcos\theta, y=rsin\theta, z=z

rectangular → cylinderical: r=\sqrt{x^2+y^2,}\tan\theta=\frac{y}{x},z=z

spherical → rectangular: x=\rho\sin\phi\cos\theta,y=\rho\sin\phi\sin\theta,z=\rho\cos\phi

rectangular → spherical: \rho=\sqrt{x^2+y^2+z^2},\tan\theta=\frac{y}{x},\phi=\arccos\left(\frac{z}{\sqrt{r^2+z^2}}\right)

cylindrical → spherical:

\rho=\sqrt{r^2+z^2},\theta=\theta,\phi=\arccos\left(\frac{z}{\sqrt{r^2+z^2}}\right)

spherical → cylindrical:r=\rho\sin\phi,\theta=\theta,z=\rho\cos\phi

30
New cards

projectile motion

r(t) = (-1/2gt2) j + tv0 + r0

31
New cards

unit tangent vector

T\left(t\right)=\frac{r^{\prime}\left(t\right)}{\left\Vert r^{\prime}\left(t\right)\right\Vert}

32
New cards

principal unit normal vector

N\left(t\right)=\frac{T^{\prime}\left(t\right)}{\left\Vert T^{\prime}\left(t\right)\right\Vert}

T\left(t\right)\cdot N\left(t\right)

33
New cards

partial derivatives

z=f\left(x,y\right)

fx(x,y) = \frac{\delta z}{\delta x}

fy(x,y) = \frac{\delta z}{\delta y}

34
New cards

limit definition partial derivatives

fx(x,y) =

\lim_{\Delta x\to0}\frac{f\left(x+\Delta x,y\right)-f\left(x,y\right)}{\Delta x}

fy(x,y) =

\lim_{\Delta y\to0}\frac{f\left(x,y+\Delta y\right)-f\left(x,y\right)}{\Delta y}

35
New cards

mixed partials

fxy(x,y)=fyx(x,y)

36
New cards

total differential

dz=fx\left(x,y\right)dx+fy\left(x,y\right)dy=\frac{\delta z}{\delta x}dx+\frac{\delta z}{\delta y}dy

37
New cards

approximation of differentials

\Delta z=fx\left(x0,y0\right)\Delta x+fy\left(x0,y0\right)\Delta y

38
New cards

chain rule

\frac{\delta z}{\delta s}=\frac{\delta z}{\delta x}\frac{\delta x}{\delta s}+\frac{\delta z}{\delta y}\frac{\delta y}{\delta s}

\frac{\delta z}{\delta t}=\frac{\delta z}{\delta x}\frac{\delta x}{\delta t}+\frac{\delta z}{\delta y}\frac{\delta y}{\delta t}

39
New cards

implicit partial derivatives

\frac{dy}{dx}=-\frac{Fx}{Fy}

40
New cards

gradient

∇f(x,y)=<fx(x,y),fy(x,y)>=fx i + fy j

41
New cards

directional derivative

  • Duf = ∇fu = fxa + fyb + fzc

  • Duf = ||∇f||cosθ

42
New cards

tangent plane

Fx(P)(x-x0)+Fy(P)(y-y0)+Fz(P)(z-z0)=0

43
New cards

second partials test

D = fxx(a,b)fyy(a,b)-[fxy(a,b)]2

44
New cards

lagrange multipliers

\nabla f\left(x,y,z\right)=\lambda\nabla g\left(x,y,z\right) and g(x,y,z) = k

  • fx= \lambda gx

  • fy= \lambda gy

  • fz= \lambda gz

  • g(x,y,z)=k

45
New cards

iterated integrals

\int\int_{R}^{}\!f\left(x,y\right)\,dA

46
New cards

area a region R

A=\int\int_{R}^{}\!1\,dA

47
New cards

volume of a solid

V=\int\int_{R}^{}\!f\left(x,y\right)\,dA

48
New cards

integrals over dy dx

\int\int_{R}^{}\!f\left(x,y\right)dA=\int_{a}^{b}\!\int_{g1\left(x\right)}^{g2\left(x\right)}\!f\left(x,y\right)\,dydx

49
New cards

integrals over dx dy

\int\int_{R}^{}\!f\left(x,y\right)dA=\int_{c}^{d}\!\int_{h1\left(x\right)}^{h2\left(x\right)}\!f\left(x,y\right)\,dxdy

50
New cards

average value of a function

favg=

\frac{1}{Area\left(R\right)}\int\int_{R}^{}\!f\left(x,y\right)\,dA

51
New cards

change of variables to polar coordinates

x=r\cos\theta

y=r\sin\theta

x^2+y^2=r^2

dA=rdrd\theta

52
New cards

double integral polar form

\int\int_{R}^{}\!f\left(x,y\right)\,dA=\int\int_{R}^{}\!f\left(r\cos\theta,r\sin\theta\right)r\,drd\theta

53
New cards

vector curl

curlF\left(x,y,z\right)=\nabla x F(x,y,z)

54
New cards

vector divergence

⋅ F(x,y,z) =

\frac{\delta M}{\delta x}+\frac{\delta N}{\delta y}+\frac{\delta P}{\delta z}