Chapter 18 - ketones and aldehydes

0.0(0)
studied byStudied by 5 people
0.0(0)
full-widthCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/30

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

31 Terms

1
New cards

Ketones

R - C (= O) - R

<p>R - C (= O) - R </p>
2
New cards

Carboxylic acid

R - C ( = O) - OH

<p>R - C ( = O) - OH</p>
3
New cards

Ester

R - C ( = O ) - O - R

<p>R - C ( = O ) - O - R </p>
4
New cards

Aldehydes 

<p></p>
5
New cards

Acid Chlorides

knowt flashcard image
6
New cards

Amides 

knowt flashcard image
7
New cards

Structure of carbonyl group

  • SP2 hybridized 

  • the C = O is shorter and stronger than more polar the C = C Bond in alkene 

8
New cards

solubility of ketones and aldehydes 

  • Good solvent for alcohols 

  • The oxygen in the carbonyl group can form hydrogen bonds with O—H or N—H groups.

  • Small ketones and aldehydes (like acetone and acetaldehyde) mix completely with water.

9
New cards

Grignard reagent

Reagent :

  1. R - mgX

  2. H30

  3. Na2Cr2O7, H2SO4

Starting

  • with an aldehyde

Mechanism 

  • the R - MgX attacks the double bond of O and the R group attaches and MGX leaves. 

  • H30 (acid ) give an H to the O making it in alcohol 

  • Na2Cr2O7 takes the Hydrogen of the alcohol making it a ketone

End product: 

  • ketone

<p>Reagent :</p><ol><li><p>R - mgX</p></li><li><p>H30</p></li><li><p>Na<sub>2</sub>Cr<sub>2</sub>O<sub>7, </sub>H<sub>2</sub>SO<sub>4</sub></p></li></ol><p>Starting</p><ul><li><p>with an aldehyde</p></li></ul><p>Mechanism&nbsp;</p><ul><li><p>the R - MgX attacks the double bond of O and the R group attaches and MGX leaves.&nbsp;</p></li><li><p>H30 (acid ) give an H to the O making it in alcohol&nbsp;</p></li><li><p>Na2Cr2O7 takes the Hydrogen of the alcohol making it a ketone</p></li></ul><p>End product:&nbsp;</p><ul><li><p>ketone</p></li></ul><p></p>
10
New cards

Oxidation of primary alcohols to aldehyde

Starting product: primary alcohol

Reagent:

  • PCC (Pyridinium chlorochromate)

  • swern

  • DMP

  1. PCC is used to oxidize primary alcohol to aldehydes 

End product: aldehyde  

<p><strong>Starting product:</strong> primary alcohol</p><p>Reagent:</p><ul><li><p>PCC (Pyridinium chlorochromate)</p></li><li><p>swern</p></li><li><p>DMP</p></li></ul><ol><li><p>PCC is used to oxidize primary alcohol to aldehydes&nbsp;</p></li></ol><p>End product: aldehyde <strong>&nbsp;</strong></p><p></p>
11
New cards

Ozonolysis Of alkenes

Reagent: 

  1. O3 ,

  2. Reductions (CH3)2S (DMS)

Starting product: Alkenes 

  • Brakes the double bond followed by a reduction 

End Product: Ketones and Aldehydes 

<p>Reagent:<sub>&nbsp;</sub></p><ol><li><p>O<sub>3</sub>&nbsp;,</p></li><li><p>Reductions (CH3)<sub>2</sub>S (DMS)</p></li></ol><p>Starting product: Alkenes&nbsp;</p><ul><li><p>Brakes the double bond followed by a reduction&nbsp;</p></li></ul><p>End Product: Ketones and Aldehydes&nbsp;</p><p></p>
12
New cards

Friedel craft reduction

Starting: Aromatic ring

Reagent: 

  • Acid halide (RCOCl)

  • Lewis Acid (AlCl₃)

Steps 

  1. Lewis acid takes the Halide from R-C(=O)-CL

  2. Carbocation is formed and benzene attacks it and then its added on 

Reaction between an acyl halide and an

aromatic ring will produce a ketone.

<p>Starting: Aromatic ring</p><p>Reagent:&nbsp;</p><ul><li><p>Acid halide (RCOCl)</p></li><li><p>Lewis Acid (AlCl₃)</p></li></ul><p>Steps&nbsp;</p><ol><li><p>Lewis acid takes the Halide from R-C(=O)-CL</p></li><li><p>Carbocation is formed and benzene attacks it and then its added on&nbsp;</p></li></ol><p>Reaction between an acyl halide and an</p><p>aromatic ring will produce a ketone.</p>
13
New cards

Reduction of Nitriles to Aldehydes

Starting product: nitrile (R - C≡N)

Reagent: (i - Bu)2 ALH → aluminum hydrides 

or DIBAL - H 

  • H3O +

  • Convertes nitriles to aldehydes  

<p><strong>Starting product:&nbsp;</strong>nitrile (R -&nbsp;C≡N)</p><p><strong>Reagent</strong>: (i - Bu)<sub>2</sub>&nbsp;ALH → aluminum hydrides&nbsp;</p><p>or DIBAL - H&nbsp;</p><ul><li><p>H<sub>3</sub>O +</p></li></ul><ul><li><p>Convertes nitriles to aldehydes&nbsp;&nbsp;</p></li></ul><p></p>
14
New cards

Aldehydes from acid chloride

Starting Product:

  • Acid chloride ( R - C (=O) - Cl 

Reagent: 

  • Li+ -AlH(O t-but)3 → Lithium aluminum tri(t-butoxy)hydride

End product: aldehyde 

<p>Starting Product:</p><ul><li><p>Acid chloride ( R - C (=O) - Cl&nbsp;</p></li></ul><p>Reagent:&nbsp;</p><ul><li><p>Li+ -AlH(O t-but)<sub>3 </sub>→&nbsp;Lithium aluminum tri(t-butoxy)hydride</p></li></ul><p>End product: aldehyde&nbsp;</p>
15
New cards

Reactivity Aldehydes vs Ketones

Aldehydes are more reactive then Ketones

16
New cards

The Wittig Reaction

Starting product: Keton or aldehyde

Reagent: Phosphorus ylide 

  • Converts a carbonyl group into a new C=C double bond 

  • Phosphorus yield is used a the nucleophile in the reaction 

Mechanism:

  • the Phosphorus ylide attacks the keton or aldehyde

  • the double bond of O breaks and it is left as negative O- (betaine)

  • The O forms a bond with the adjacent Ph3P (Oxaphosphetane formation)

  • but this will collapse and the Oxygen will break its bond with carbon and leave with Ph3P and the carbon will become a double bond and then form a carbonyl (ketone or aldehyde ) see down below.

SN2 mechanism 

<p>Starting product: Keton or aldehyde</p><p>Reagent: Phosphorus ylide&nbsp;</p><ul><li><p>Converts a carbonyl group into a new C=C double bond&nbsp;</p></li><li><p>Phosphorus yield is used a the nucleophile in the reaction&nbsp;</p></li></ul><p>Mechanism:</p><ul><li><p>the Phosphorus ylide attacks the keton or aldehyde</p></li><li><p>the double bond of O breaks and it is left as negative O- (betaine)</p></li><li><p>The O forms a bond with the adjacent Ph<sub>3</sub>P (Oxaphosphetane formation)</p></li><li><p>but this will collapse and the Oxygen will break its bond with carbon and leave with Ph3P and the carbon will become a double bond and then form a carbonyl (ketone or aldehyde ) see down below.</p></li></ul><img src="https://knowt-user-attachments.s3.amazonaws.com/08269389-1f80-494a-bf96-91fc239a37a6.png" data-width="100%" data-align="center"><p>SN2 mechanism&nbsp;</p>
17
New cards

Preparation of Phosphorus Yield (Wittig reaction)

Starting: 

  • triphenylphosphine 

Reagent: 

  • alkyl halide R - C - X

Basea: 

  • n-Butyllithium (n-BuLi)

  • Sodium hydride (NaH)

  • Potassium tert-butoxide (t-BuOK)

Mechanism 

  1. triphenylphosphine attacks Alkyl halide 

  2. the triphenylphosphine kicks the X (halide) out and a new bond is formed 

  3. The base takes a hydrogen from carbon.

18
New cards

Hydration of Ketone + Aldehyde 

Reagent:

  • H2

Starting Product 

  • Ketone

  • Aldehyde 

End product:

2 Alcohol group attached to the carbon where the double bond of Oxygen was originally

  • geminal diol

<p>Reagent: </p><ul><li><p>H<sub>2</sub>O&nbsp;</p></li></ul><p>Starting Product&nbsp;</p><ul><li><p>Ketone</p></li><li><p>Aldehyde&nbsp;</p></li></ul><p>End product:</p><p> 2 Alcohol group attached to the carbon where the double bond of Oxygen was originally </p><ul><li><p><strong>geminal diol</strong></p></li></ul><p></p>
19
New cards

Acid-Catalyzed Hydration of Carbonyls

Reagent:

  • H3

  • H2O

Starting product 

  • Ketone or

  • Aldehyde 

Mechanism 

  • H3O give a hydrogen to O (oxygen) 

  • Water (H2O) comes in and attacks carbon 

  • Another water comes in and protonates ( The H that was from the water)  

<p>Reagent: </p><ul><li><p>H<sub>3</sub>O&nbsp;</p></li><li><p>H<sub>2</sub>O</p></li></ul><p>Starting product&nbsp;</p><ul><li><p>Ketone or</p></li><li><p>Aldehyde&nbsp;</p></li></ul><p>Mechanism&nbsp;</p><ul><li><p>H<sub>3</sub>O give a hydrogen to O (oxygen)&nbsp;</p></li><li><p>Water (H<sub>2</sub>O) comes in and attacks carbon&nbsp;</p></li><li><p>Another water comes in and protonates ( The H that was from the water) &nbsp;</p></li></ul><p></p>
20
New cards

Base-Catalyzed Hydration of Carbonyls

Reagent: 

  • Hydroxide ion (OH-

  • H2O

Starting product:

  • Ketone 

  • Aldehyde

Mechansium:

  1. the base (OH ) attacks Carbon

  2. the double bond breaks making O-

  3. Water comes in and Oxygen takes a hydrogen from water

End product 

  • two –OH groups on the same carbon (geminal diol)

<p>Reagent:&nbsp;</p><ul><li><p>Hydroxide ion (OH<sup>-</sup>)&nbsp;</p></li><li><p>H<sub>2</sub>O</p></li></ul><p>Starting product:</p><ul><li><p>Ketone&nbsp;</p></li><li><p>Aldehyde</p></li></ul><p>Mechansium: </p><ol><li><p>the base (OH ) attacks Carbon </p></li><li><p>the double bond breaks making O<sup>-</sup> </p></li><li><p>Water comes in and Oxygen takes a hydrogen from water </p></li></ol><p>End product&nbsp;</p><ul><li><p>two –OH groups on the same carbon (geminal diol) </p></li></ul><p></p>
21
New cards

Cyanohydrin Formation

Reagent

  • -:C≡N (Hydrogen cyanide)

can also be seen as NaCN

  • H - C≡N

Starting product 

  • ketone

  • Aldehyde 

Mechansium 

  1. The CN⁻ attacks the carbon of the carbonyl (C=O)

  2. The oxygen from the carbonyl grabs a proton (H⁺) from HCN or water.

End product:

  • cyanohydrin (–OH and –CN attached to the same carbon).

<p>Reagent</p><ul><li><p><sup>-</sup>:C≡N (Hydrogen cyanide)</p></li></ul><p>can also be seen as NaCN</p><ul><li><p>H - C≡N</p></li></ul><p>Starting product&nbsp;</p><ul><li><p>ketone</p></li><li><p>Aldehyde&nbsp;</p></li></ul><p>Mechansium&nbsp;</p><ol><li><p>The&nbsp;CN⁻ attacks the carbon of the carbonyl (C=O)</p></li><li><p>The oxygen from the carbonyl grabs a proton (H⁺) from HCN or water.</p></li></ol><p>End product:</p><ul><li><p>cyanohydrin (–OH and –CN attached to the same carbon).</p></li></ul><p></p>
22
New cards

Formation of Imines

Reagent :

  • 1 amine or ammonia (R - NH2)

  • H+

Starting: Ketone/Aldehyde 

Mechanism:

Step 1: Acid-catalyzed addition

  1. The hydrogen form the acid from H+ is taken by Oxygen. 

  2. the double bond of of O breaks 

  3. The nitrogen of the amine attacks the carbonyl carbon.

  4. Water comes in and takes an H from RNH2 making it R- NH. 

Step 2: Acid-catalyzed dehydration

  1. Another H+ is introduces and Oxygen taking a H  makes it a L.G H2O

  2. A double bond with carbon and nitrogen from

  3. Water comes in and take an H from R- NH

<p><strong>Reagent :</strong></p><ul><li><p>1 amine or ammonia (R - NH<sub>2</sub>)</p></li><li><p>H<sup>+</sup></p></li></ul><p><strong>Starting</strong>: Ketone/Aldehyde&nbsp;</p><p><strong>Mechanism:</strong></p><p><em>Step 1:&nbsp;Acid-catalyzed addition</em> </p><p><strong> </strong></p><ol><li><p>The hydrogen form the acid from H+ is taken by Oxygen.&nbsp;</p></li><li><p>the double bond of of O breaks&nbsp;</p></li><li><p>The nitrogen of the amine attacks the carbonyl carbon.</p></li><li><p><strong>Water</strong> comes in and takes an H from RNH2 making it R- NH.&nbsp;</p></li></ol><p><em>Step 2:&nbsp;Acid-catalyzed dehydration</em></p><ol><li><p>Another H+ is introduces and Oxygen taking a H&nbsp; makes it a L.G H<sub>2</sub>O</p></li><li><p>A double bond with carbon and nitrogen from</p></li><li><p>Water comes in and take an H from R- NH</p></li></ol><img src="https://knowt-user-attachments.s3.amazonaws.com/da36ce0d-0788-4f02-8fff-8788b000f287.png" data-width="100%" data-align="center"><p></p>
23
New cards

Formation of Acetals

Reagent

  • 2 R - OH 

  • H+ (H - OTs) 

Starting 

  • aldehyde 

  • Ketone  

Mechanism:

  • Step 1: Carbonyl oxygen gets protonated (this is before the alcohol attacks).

  • Step 2: Alcohol attacks the carbonyl carbon → tetrahedral intermediate → hemiacetal.

  • Step 3: Another H+ and Oxygen takes another hydrogen make it H2) and it leaves 

  • Step 4: Second alcohol attacks → acetal formed.

  • another alcohol comes in and takes a hydrogen  

<p>Reagent</p><ul><li><p>2 R - OH&nbsp;</p></li><li><p>H+ (H - OTs)&nbsp;</p></li></ul><p>Starting&nbsp;</p><ul><li><p>aldehyde&nbsp;</p></li><li><p>Ketone&nbsp;&nbsp;</p></li></ul><p>Mechanism:</p><ul><li><p>Step 1: <strong>Carbonyl oxygen gets protonated</strong> (this is <strong>before the alcohol attacks</strong>).</p></li><li><p>Step 2: <strong>Alcohol attacks the carbonyl carbon</strong> → tetrahedral intermediate → hemiacetal.</p><img src="https://knowt-user-attachments.s3.amazonaws.com/f8613128-5c14-4e6a-bf97-ca489873142b.png" data-width="100%" data-align="center"></li><li><p>Step 3: <strong>Another H+</strong>&nbsp;and Oxygen takes another hydrogen make it H2) and it leaves&nbsp;</p></li><li><p>Step 4: <strong>Second alcohol attacks</strong> → acetal formed.</p></li><li><p>another alcohol comes in and takes a hydrogen&nbsp;&nbsp;</p></li></ul><img src="https://knowt-user-attachments.s3.amazonaws.com/de6de063-236e-4047-9744-7f36af0d6e3c.png" data-width="100%" data-align="center"><p></p>
24
New cards

Hemiacetal Formation (intermediate step) 

Starting:

Ketone/ Aldehyde 

Reagent: 

  • H+ 

  • R- OH 

Mechanism: 

  1. The oxygen takes an H from H+ 

  2. the first alcohol comes in and attacks the carbon 

  3. another alcohol comes in a takes the hydrogent from the first alcohol.  

<p>Starting: </p><p>Ketone/ Aldehyde&nbsp;</p><p>Reagent:&nbsp;</p><ul><li><p>H+&nbsp;</p></li><li><p>R- OH&nbsp;</p></li></ul><p>Mechanism:&nbsp;</p><ol><li><p>The oxygen takes an H from H+&nbsp;</p></li><li><p>the first alcohol comes in and attacks the carbon&nbsp;</p></li><li><p>another alcohol comes in a takes the hydrogent from the first alcohol.&nbsp;&nbsp;</p></li></ol><img src="https://knowt-user-attachments.s3.amazonaws.com/f59cdce2-ef68-4ecb-891c-321c930ed1b4.png" data-width="100%" data-align="center"><p></p>
25
New cards

Hydrolysis of Acetals

Starting product:

  • Acetal 

Reagent: 

  • Water (H2O)

  • Acid catalyst (H⁺)

End product: 

  • The original aldehyde or ketone

<p>Starting product: </p><ul><li><p>Acetal&nbsp;</p><img src="https://knowt-user-attachments.s3.amazonaws.com/2363762d-be5e-4f21-8d09-7074c403d512.png" data-width="100%" data-align="center"></li></ul><p>Reagent:&nbsp;</p><ul><li><p>Water (H2O)</p></li><li><p>Acid catalyst (H⁺)</p></li></ul><p>End product:&nbsp;</p><ul><li><p>The <strong>original aldehyde or ketone</strong> </p></li></ul><p></p>
26
New cards

Cyclic Acetals

Starting

  • Aldehyde or Ketone (R–C=O)

Reagent: 

  • H+

  • Diol

  • A diol reacts with a carbonyl to make a ring-shaped (cyclic) acetal.

  • The reaction can go backward (it’s reversible).

  • Chemists use this to protect aldehydes or ketones during other reactions.

27
New cards

Acetal with NaBH4

  • Acetal will not react with NaBH4

  • so is this example only the ketone will reduced

  • and the Acetal will experience hydrolysis and will protonate the alcohol and remove the acetal to aldehyde

<ul><li><p>Acetal will not react with NaBH4 </p></li><li><p>so is this example only the ketone will reduced </p></li><li><p>and the Acetal will experience hydrolysis and will protonate the alcohol and remove the acetal to aldehyde </p></li></ul><p></p>
28
New cards

Sodium Borohydride

Reduction reagent

  • NaBH4

  1. Reduces keton to secondary alcohols and aldehydes to 1alcohols

  2. Cant reduce ester or carboxylic acid, acyl chlorides or amides

  • convertes the Oxygen to an alcohol 

<p>Reduction reagent </p><ul><li><p>NaBH<sub>4</sub> </p></li></ul><ol><li><p>Reduces keton to secondary alcohols and aldehydes to 1alcohols </p></li><li><p>Cant reduce ester or carboxylic acid, acyl chlorides or amides </p></li></ol><ul><li><p>convertes the Oxygen to an alcohol&nbsp;</p></li></ul><img src="https://knowt-user-attachments.s3.amazonaws.com/7ecaab83-7ab6-4d49-b734-1820e549d751.png" data-width="100%" data-align="center"><p></p>
29
New cards

Lithium Aluminum Hydride

Reduction reagent

  • LiALH4

  • Ether

Can only reduce carbonyl (ketone and aldehyde) because it is a very strong reducing agent

  • Makes O → OH

<p>Reduction reagent </p><ul><li><p>LiALH<sub>4 </sub></p></li><li><p>Ether </p></li></ul><p>Can only reduce carbonyl (ketone and aldehyde) because it is a very strong reducing agent </p><ul><li><p>Makes O → OH </p></li><li><p></p></li></ul><p></p>
30
New cards

Catalytic Hydrogenation 

Reducing reagent 

  • NiH2

  1. it will attack the alkene (C = C ) first

  2. then it attacks the carbonyl

<p>Reducing reagent&nbsp;</p><ul><li><p>NiH<sub>2</sub></p></li></ul><ol><li><p>it will attack the alkene (C = C ) first </p></li><li><p>then it attacks the carbonyl </p></li></ol><p></p>
31
New cards

Deoxygenation of Ketones and Aldehydes

Reagent

  • H2

The Clemmensen reduction or the Wolff–Kishner

reduction can be used to deoxygenate ketones and aldehydes

  • Adds two hydrogen the same carbon so removes the double bond with Oxygen 

<p>Reagent </p><ul><li><p>H<sub>2</sub></p></li></ul><p>The Clemmensen reduction or the Wolff–Kishner</p><p>reduction can be used to deoxygenate ketones and aldehydes</p><ul><li><p>Adds two hydrogen the same carbon so removes the double bond with Oxygen&nbsp;</p></li></ul><p></p>