1/13
Flashcards for trigonometry and polar coordinates.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Six Primary Trigonometric Functions
Sine, cosine, tangent, cosecant, secant, and cotangent.
Inverse Trig Functions
arcsin(x), arccos(x), arctan(x)
Reciprocal Trig Identities
csc(θ) = 1 / sin(θ), sec(θ) = 1 / cos(θ), cot(θ) = 1 / tan(θ)
General Form of a Polar Equation
r = f(θ)
Common Types of Polar Graphs
Circles, Lines, Limacons, Rose curves, Spirals
Period of sin(x) or cos(x)
Period = 2π / |B| in y = A sin(Bx) or y = A cos(Bx)
Period of tan(x) or cot(x)
Period = π / |B| in y = A tan(Bx) or y = A cot(Bx)
Converting from Polar to Rectangular Coordinates
x = r cos(θ), y = r sin(θ)
Converting from Rectangular to Polar Coordinates
r = √(x² + y²), θ = tan ⁻¹(y / x)
Convert Complex Number (Polar to Rectangular)
If z = r(cosθ + i sinθ), then z = r cis(θ) = r cos(θ) + i r sin(θ)
Convert Complex Number (Rectangular to Polar)
Given z = a + bi: r = √(a² + b²), θ = tan ⁻¹(b / a); Then z = r cis(θ)
Sine Function
sin(θ) = opposite / hypotenuse
Cosine Function
cos(θ) = adjacent / hypotenuse
Tangent Function
tan(θ) = opposite / adjacent