circle (standard form)
(x-h)^2 + (y-k)^2 = r^2
center at (h,k)
r = radius
VERTICAL-opening parabola (standard form)
(x-h)^2 = 4p(y-k)
vertex: (h,k)
p: distance between focus/directrix and vertex
HORIZONTAL-opening parabola (standard form)
(y-k)^2 = 4p(x-h)
vertex: (h,k)
p: distance between focus/directrix and vertex
tangent line of a parabola
y = mx - yb
yb = the y-coordinate of point b
point b = (focus - d)
d = sqrt((x2 - x1)^2 + (y2 - y1)^2) (use distance formula)
m = slope ((y2 - y1) / (x2 - x1)) where one of the points is b
LONG ellipse (standard form)
((x-h)^2 / a^2) + ((y-k)^2 / b^2) = 1
center: (h,k)
a: major axis
b: minor axis
c^2 = a^2 - b^2
vertices: (h + a, k) (h - a, k) (h, k + b) (h, k - b)
foci: (h + c, k) (h - c, k)
TALL ellipse (standard form)
((x-h)^2 / b^2) + ((y-k)^2 / a^2)
center: (h,k)
vertices: (h + b, k) (h - b, k) (h, k + a) (h, k - a)
foci: (h, k + c) (h, k - c)
eccentricity
e = c/a
hyperbola (standard form) (t.a.v.)
((y-k)^2 / a^2) - ((x-h)^2 / b^2) = 1
center: (h,k)
A: distance between a vertex and the center
C: distance between a focus and the center
b^2 = c^2 - a^2
hyperbola (standard form) (t.a.h.)
((x-h)^2 / a^2) - ((y-k)^2 / b^2) = 1
center: (h,k)
hyperbolic asymptotes (t.a.h.)
y = k + (b/a)(x - h)
y = k - (b/a)(x - h)
hyperbolic asymptotes (t.a.v.)
y = k + (a/b)(x - h)
y = k - (a/b)(x - h)
circle discriminant
b^2 - 4ac < 0 (a = c)
parabola discriminant
b^2 - 4ac = 0
ellipse discriminant
b^2 - 4ac < 0 (a and c have same signs)
hyperbola discriminant
b^2 - 4ac > 0