Circuit Analysis (DC and AC Steady State)

0.0(0)
studied byStudied by 0 people
0.0(0)
full-widthCall with Kai
GameKnowt Play
New
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/63

flashcard set

Earn XP

Description and Tags

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

64 Terms

1
New cards

Given a 12 V source and series resistors 2 kΩ and 4 kΩ, find the voltage across the 4 kΩ.

Series divider.
V_{4k} = 12\cdot\frac{4}{2+4}=8\text{ V}

2
New cards

Three resistors 3 kΩ, 6 kΩ, and 2 kΩ in parallel. Find the equivalent resistance.

Use

R{eq}^{-1}=\sum 1/Ri
R_{eq}=\left(\frac{1}{3000}+\frac{1}{6000}+\frac{1}{2000}\right)^{-1}=1000\ \Omega

3
New cards

In the circuit: source 10 V feeds series 1 kΩ then a parallel branch of 2 kΩ // 3 kΩ to ground. Find total current from the source.

First

R{//}=(2k//3k)=1.2\text{ k}\Omega. Total RT=1k+1.2k=2.2\text{ k}\Omega
I=\frac{10}{2.2k}=4.545\text{ mA}

4
New cards

Use current division: Node fed by 5 mA splits into parallel 2 kΩ and 8 kΩ. Find current in 2 kΩ.

I{2k}=IT\frac{R{_{o\operatorname{th}er}}}{R{_{all}}}=5\text{ mA}\cdot\frac{8k}{2k+8k}=4\text{ mA} - current divider formula

5
New cards

Find Thevenin equivalent seen by a 1 kΩ load: a 12 V source in series with 3 kΩ.

Open-circuit V:

V{th}=12\text{ V}. R{th}=3\text{ k}\Omega (deactivate source).
With 1 kΩ load: I=\frac{12}{3k+1k}=3\text{ mA}

6
New cards

Norton equivalent of the same (12 V in series with 3 kΩ).

IN=\frac{12}{3k}=4\text{ mA},\quad RN=3\text{ k}\Omega - This represents the current and resistance in a Norton equivalent circuit derived from a Thevenin equivalent. The Norton equivalent describes how a circuit can be simplified into a current source and parallel resistance.

7
New cards

Superposition: A node has two sources: 10 V through 2 kΩ and 5 V through 1 kΩ to the same node, node to ground via 3 kΩ. Find node voltage.

Deactivate one source at a time (voltage→short).
With 10 V active: divider to node via 2 kΩ||3 kΩ →

V1=10\cdot\frac{3||2}{(3||2)+2} = 10\cdot\frac{1.2}{3.2}=3.75\text{ V} With 5 V active through 1 kΩ and 3 kΩ to ground: V2=5\cdot\frac{3}{1+3}=3.75\text{ V}

V=V1+V2=7.5\text{ V}

8
New cards

Source transformation: 2 mA current source in parallel with 5 kΩ → Thevenin form.

V_{th}=I\cdot R=2\text{ mA}\cdot5k=10\text{ V} in series with 5 kΩ. - This process converts a current source and parallel resistor into an equivalent voltage source and series resistor, maintaining the same load current behavior.

9
New cards

Max power transfer: If

R{th}=1.5\text{ k}\Omega and V{th}=9\text{ V}, find R_L and maximum power.

RL=R{th}=1.5\text{ k}\Omega. The maximum power transfer theorem states that maximum power is delivered to a load when the load resistance equals the Thevenin resistance of the source circuit, leading to a calculated maximum power output.

P{max}=\frac{V{th}^2}{4R_{th}}=\frac{81}{6000}=13.5\text{ mW}

10
New cards

Two meshes share a 4 kΩ. Mesh1 has 12 V source and 2 kΩ; Mesh2 has 8 V source (opposite polarity) and 3 kΩ. Write mesh equations (clockwise currents).

\text{M1: }(2k+4k)i1-4k\,i2=12

\text{M2: }-4k\,i1+(3k+4k)i2=8

11
New cards

Solve quick nodal: Node V has resistors to 10 V via 5 kΩ, to 0 V via 10 kΩ, and to 5 V via 10 kΩ. Find V.

KCL: \frac{V-10}{5k}+\frac{V-0}{10k}+\frac{V-5}{10k}=0
Multiply 10k: 2(V-10)+V+(V-5)=0\Rightarrow 4V=25\Rightarrow V=6.25\text{ V}

12
New cards

Find power in a 4 kΩ resistor that has 8 V across it.

P=V^2/R=64/4000=16\text{ mW}

13
New cards

A 10 μF capacitor initially uncharged is connected to 12 V through 6 kΩ. Find v_C(t).

RC step [HB]. \tau=RC=6k\cdot10\mu=0.06\text{ s}
v_C(t)=12(1-e^{-t/0.06})\text{ V}

14
New cards

For the same circuit at t=0.12\text{ s}, find capacitor voltage.

v_C=12(1-e^{-0.12/0.06})=12(1-e^{-2})=12(1-0.1353)=10.38\text{ V} At t=0.12 s, the voltage across the capacitor can be calculated using the result from the RC charging equation, yielding approximately 10.38 V.

15
New cards

An inductor 50 mH in series with 100 Ω, step of 5 V at t=0. Find current i(t).

RL step [HB]. \tau=\frac{L}{R}=0.05/100=0.0005\text{ s}
i(t)=\frac{V}{R}\left(1-e^{-t/\tau}\right)=0.05(1-e^{-t/0.0005})\ \text{A}

16
New cards

Energy stored in a 2 mH inductor at 3 A.

W=\frac{1}{2}Li^2=\frac{1}{2}(0.002)(9)=0.009\text{ J} - The energy stored in an inductor is calculated using the formula for electromagnetic energy, which is dependent on the inductance and the square of the current.

17
New cards

Energy in a 22 μF capacitor at 5 V.

W=\frac{1}{2}CV^2=0.5\cdot22\mu\cdot25=0.000275\text{ J}

18
New cards

AC: Find impedance of series R=100 Ω and C=10 μF at f=159.15\text{ Hz}.

X_C=\frac{1}{2\pi f C}=100\ \Omega → Z=100-j100=\;141.4\angle-45^\circ\ \Omega - The impedance in an AC circuit is the total opposition to current flow, which includes both resistance (R) and reactance (X). In this case, the impedance is expressed in rectangular form and can also be represented in polar form.

19
New cards

AC: For Z above with 120∠0° Vrms, find Irms magnitude.

|I|=|V|/|Z|=120/141.4=0.849\text{ A} - The rms current magnitude is calculated using Ohm's law for AC circuits, where the voltage is divided by the impedance magnitude, resulting in approximately 0.849 A.

20
New cards

AC: Compute complex power for V=120\angle0^\circ\text{ V} and I=0.849\angle45^\circ\text{ A}.

S=VI^*=120\angle0^\circ\cdot0.849\angle-45^\circ=101.9\angle-45^\circ\ \text{VA}
P=|S|\cos45^\circ=72.1\text{ W},\ Q=|S|\sin(-45^\circ)=-72.1\text{ var}

21
New cards

Power factor correction: Load 2 kW at pf=0.8 lag on 120 V, 60 Hz. Find required shunt C to raise pf to 1.

Load current angle \phi=\cos^{-1}0.8=36.87^\circ.

QL=P\tan\phi=2\cdot0.75=1.5\text{ kvar}. Need QC=1.5\text{ kvar}

XC=\frac{V^2}{QC}=\frac{(120)^2}{1500}=9.6\ \Omega →
C=\frac{1}{2\pi f X_C}=\frac{1}{2\pi\cdot60\cdot9.6}=276\ \mu\text{F}

22
New cards

Series RLC: R=20 Ω, L=50 mH, C=100 μF. Find resonant frequency.

\omega0=\frac{1}{\sqrt{LC}}=\frac{1}{\sqrt{0.05\cdot100\mu}}=447.2\ \text{rad/s} f0=\omega_0/2\pi=71.2\text{ Hz} - The resonant frequency of a series RLC circuit is the frequency at which the inductive and capacitive reactances are equal, resulting in maximum current flow. For the given values, it is calculated as f_0=71.2 ext{ Hz}.

23
New cards

Delta–Wye: A delta of 6 Ω per side. Convert to wye.

Each wye leg R=\frac{R_\Delta}{3}=\;2\ \Omega

24
New cards

Wye–Delta: A balanced wye of 12 Ω per leg → delta side value?

Each delta side

R=RY+RY=\;24\ \Omega

25
New cards

Ideal op-amp inverting: R_{in}=10\text{ k}\Omega,\ R_f=47\text{ k}\Omega. Gain and output for V_{in}=0.2\text{ V}.

Gain A_v=-R_f/R_{in}=-4.7 → V_o=-0.94\text{ V}

26
New cards

Ideal op-amp non-inverting: R_1=10\text{ k}\Omega,\ R_2=30\text{ k}\Omega (R2 from output to – input, R1 from – input to ground). Vin=0.3 V. Find Vo.

A_v=1+\frac{R_2}{R_1}=1+3=4 → V_o=1.2\text{ V}

27
New cards

Op-amp summing inverter: R_f=20\text{ k}\Omega, inputs: V_1=0.5\text{ V} via 10 kΩ, V_2=0.2\text{ V} via 20 kΩ. Find output.

V_o=-R_f\left(\frac{V_1}{10k}+\frac{V_2}{20k}\right)=-20k(0.00005+0.00001)=-1.2\text{ V}

28
New cards

Diode piecewise-linear: 5 V source, series 1 kΩ, silicon diode (0.7 V drop). Find current.

Assume on: I=\frac{5-0.7}{1k}=4.3\text{ mA} → valid (I>0).

29
New cards

Bridge rectifier: Approximate average DC output for 12 V_rms secondary (ideal diodes, capacitorless).

V_{avg}\approx\frac{2V_m}{\pi}=\frac{2(12\sqrt{2})}{\pi}=10.8\text{ V}

30
New cards

Time constant recognition: In RC ladder with Thevenin seen by C as 3 kΩ, C=22 μF. Find τ.

\tau=R_{th}C=3000\cdot22\mu=0.066\text{ s}

31
New cards

RL decay: Inductor 100 mH, series R=50 Ω. Initial current 0.5 A, switch opens (free decay). Find current at 20 ms.

\tau=L/R=0.1/50=2\text{ ms}
i(t)=0.5\,e^{-t/\tau}=0.5 e^{-20/2}=0.5e^{-10}\approx0.0000227\text{ A}

32
New cards

Nodal with dependent source: Node V to ground via 4 kΩ; to 10 V via 8 kΩ; dependent current source leaving node =0.001V A. Find V.

KCL: \frac{V-10}{8k}+\frac{V-0}{4k}+0.001V=0
Multiply 8k: (V-10)+2V+8k(0.001)V=0\Rightarrow 3V-10+8V=0
11V=10\Rightarrow V=0.909\text{ V}

33
New cards

Find Norton current by shorting load: 10 V source → 1 kΩ → node, from node 2 kΩ to ground. Short node to ground.

Short kills 2 kΩ branch; current is 10/1k=10\text{ mA}

34
New cards

Find Thevenin resistance by looking-in after deactivating sources: prior circuit.

With source shorted, 1 kΩ || 2 kΩ → R_{th}=667\ \Omega

35
New cards

Current division with impedances: Two branches in parallel: Z_1=50-j50\ \Omega and Z_2=100+j0\ \Omega, total current 2∠0° A. Find branch currents.

I_1=I_T\frac{Z_2}{Z_1+Z_2}=2\frac{100}{(50-j50)+100}=2\frac{100}{150-j50}

Compute: I_1=2\cdot\frac{100(150+j50)}{(150)^2+(50)^2}=2\cdot\frac{15000+j5000}{25000}=1.2+ j0.4\text{ A}

I_2=2-(1.2+j0.4)=0.8-j0.4\text{ A}

36
New cards

RMS vs peak: A sine has

V{rms}=120\text{ V}. Find V{peak}

Vp=\sqrt{2}V{rms}=169.7\text{ V}

37
New cards

Real/Reactive/Complex power for V=208\angle0^\circ\ \text{V}, I=10\angle-36.87^\circ\ \text{A}.

S=VI^*=208\cdot 10\angle 36.87^\circ=2080\angle36.87^\circ\ \text{VA}
P=2080\cos36.87^\circ=1664\text{ W},\ Q=2080\sin36.87^\circ=1248\text{ var}

38
New cards

Resonant RLC current at f0: R=10 Ω, L=25 mH, C chosen for resonance at 100 Hz. With 20 Vrms, find I_rms.

At resonance, XL=XC → purely resistive.
I=V/R=20/10=2\text{ A}

39
New cards

Find C for resonance with R=10 Ω, L=25 mH at 100 Hz.

\omega0=2\pi 100, C=\frac{1}{\omega0^2 L}=\frac{1}{(2\pi 100)^2\cdot0.025}=101.3\ \mu\text{F}

40
New cards

Thévenin via nodal: Source 5 V through 1 kΩ to node; node to ground through 2 kΩ; output is node to ground. Find

V{th}, R{th}.

Open-circuit V_{th}=5\cdot\frac{2}{1+2}=3.333\text{ V}.

Deactivate source → R_{th}=1k||2k=667\ \Omega

41
New cards

Given a dependent voltage source

Vx=3Ix in series with 2 kΩ, and I_x is current in a 1 kΩ to ground at node, outline Thevenin find.

(1) Excite with test source at port.

(2) Write nodal equations including V_x=3I_x and I_x=(V/1k).

(3) Solve V/I to get R_{th}.

(4) Open-circuit voltage gives V_{th}.

42
New cards

Capacitor AC impedance: C=4.7 μF at 60 Hz. Find magnitude of Xc.

X_C=\frac{1}{2\pi f C}=\frac{1}{2\pi\cdot60\cdot4.7\mu}=563\ \Omega

43
New cards

Inductor AC impedance: L=120 mH at 400 Hz. Find XL.

X_L=2\pi f L=2\pi\cdot400\cdot0.12=301.6\ \Omega

44
New cards

Two-port quick concept: For a buffer (voltage follower) what is input and output resistance ideally?

R{in}\to\infty,\quad R{out}\to0 (prevents loading) - The input resistance is infinitely high and the output resistance is zero, ensuring no loading effect on the preceding stage.

45
New cards

Loading: A source 10 V with internal 1 kΩ feeds a 2 kΩ voltmeter (modeled as resistor). Measured voltage?

Divider: V=10\cdot\frac{2k}{1k+2k}=6.667\text{ V}

46
New cards

Current measurement loading: Ammeter modeled as 0.1 Ω in series with 10 Ω load and 5 V source. True current vs measured?

True I=5/10=0.5\text{ A}; measured I=5/(10+0.1)=0.495\text{ A} (slight low).

47
New cards

Transient: RC discharge from 10 V with R_th=5 kΩ, C=1 μF. Voltage after 2 ms?

\tau=5k\cdot1\mu=5\text{ ms}
v(t)=10e^{-t/\tau}=10e^{-2/5}=10e^{-0.4}=6.70\text{ V}

48
New cards

Compute average power in resistor: i(t)=3\sqrt{2}\sin(\omega t)\ \text{A} through 10 Ω.

I_{rms}=3\text{ A} \Rightarrow P=I^2R=9\cdot10=90\text{ W}

49
New cards

Phasor from time function: v(t)=50\cos(1000t-30^\circ). Give V phasor (rms).

Peak 50 → rms 35.36.
\tilde{V}=35.36\angle-30^\circ\ \text{V}

50
New cards

Given V=120\angle20^\circ\ \text{V},\ I=4\angle-10^\circ\ \text{A}. Compute S,P,Q,pf.

S=480\angle30^\circ\ \text{VA};\ P=480\cos30^\circ=416\text{ W}
Q=480\sin30^\circ=240\text{ var};\ \text{pf}=\cos30^\circ=0.866\ \text{lag}

51
New cards

Find Norton of a black box measured: open-circuit V=6 V, short-circuit I=30 mA.

IN=30\text{ mA},\ RN=V/I=6/0.03=200\ \Omega

52
New cards

Measure tau experimentally: Step input → output reaches 63.2% in 4 ms. What is \tau?

By definition, \tau=4\text{ ms}

53
New cards

First-order step response form (concept).

y(t)=y(\infty)+\big(y(0^+)-y(\infty)\big)e^{-t/\tau} [HB]

54
New cards

Dependent source power check: If a dependent current source value is

2Vx A with Vx=3\text{ V} and terminal voltage across source is -4\text{ V} (reference + at top). Power absorbed?

i=6\text{ A},\ p=v i=-4\cdot6=-24\text{ W} → delivers 24 W.

55
New cards

Find equivalent of series: Z1= 40∠30° Ω and Z2= 20∠-60° Ω.

Convert to rectangular, add:
Z1≈(34.64+j20), Z2≈(10 - j17.32).
Sum ≈(44.64 + j2.68)=44.72∠3.44° Ω.

56
New cards

Parallel of Z1= 50∠-45° Ω and Z2= 100∠0° Ω.

Use product over sum or admittances:

Y1=1/50\angle45^\circ=0.02\angle45^\circ Y2=0.01\angle0^\circ
Add: convert to rectangular and invert → Z_{eq}\approx 66.9\angle-15.6^\circ\ \Omega

57
New cards

Given a phasor current I=5\angle-53.13^\circ\ \text{A} through Z=10+j10\ \Omega. Find voltage phasor.

V=IZ=5\angle-53.13^\circ\cdot14.14\angle45^\circ=70.7\angle-8.13^\circ\ \text{V}

58
New cards

Design a divider to get 2 V from 10 V with total resistance ≈ 10 kΩ.

Let 

R{_{top}}+R{_{bot}}=10k,\ \frac{Vo}{V{_{I}}}=\frac{R_{bot}}{10k}=0.2 → R{bot}=2k,\ R_{top}=8k

59
New cards

Find average value of half-wave rectified sine with peak 10 V.

V{avg}=\frac{Vp}{\pi}=3.183\text{ V}

60
New cards

Find RMS of square wave ±5 V.

V_{rms}=5\text{ V}

61
New cards

Capacitor current given voltage:

vC(t)=10(1-e^{-t/0.02})u(t), C=100 μF. Find iC(t) for t>0

i=C\,dv/dt=100\mu\cdot\frac{10}{0.02}e^{-t/0.02}=0.05e^{-t/0.02}\ \text{A}

62
New cards

Inductor voltage given current: iL(t)=2e^{-t/0.01}u(t), L=5 mH. Find vL(t).

v=L\,di/dt=0.005\cdot\left(-\frac{2}{0.01}\right)e^{-t/0.01}=-1e^{-t/0.01}\ \text{V}

63
New cards

KCL/KVL sign convention (concept).

Passive sign convention: power absorbed when current enters the positive-labeled terminal. KCL: currents leaving/entering sum to 0; KVL: oriented voltage drops sum to source rises around a loop.

64
New cards

When to use source transformation vs superposition (concept).

Use source transformation to simplify series/parallel combinations with a single source; use superposition when multiple independent sources act on linear networks to find contributions cleanly.

Explore top flashcards

World Lit Midterm
Updated 1046d ago
flashcards Flashcards (25)
Vývinovka
Updated 506d ago
flashcards Flashcards (66)
Units 1-12 of Vocab
Updated 1052d ago
flashcards Flashcards (240)
BIO Final 2023
Updated 692d ago
flashcards Flashcards (159)
Chapter 2
Updated 777d ago
flashcards Flashcards (30)
World Lit Midterm
Updated 1046d ago
flashcards Flashcards (25)
Vývinovka
Updated 506d ago
flashcards Flashcards (66)
Units 1-12 of Vocab
Updated 1052d ago
flashcards Flashcards (240)
BIO Final 2023
Updated 692d ago
flashcards Flashcards (159)
Chapter 2
Updated 777d ago
flashcards Flashcards (30)