1/26
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
(d/dx)x^r
rx^(r-1)
Let c be a constant.
Then d/dxc=0
(d/dx) (f(x)+g(x))
(d/dx)f(x)+(d/dx)g(x)
(d/dx)(c f (x))
c f’(x) where c is a constant
(d/dx)(f(x)g(x))
f’(x)g(x)+f(x)g’(x) (product rule)
(d/dx)(f(x)/g(x)
(g(x)f’(x)-f(x)g’(x)/[g(x)]²
(d/dx)a^x
a^xln(a)
(d/dx)e^x
e^x
(d/dx)ln(x)
1/x
(d/dx)loga(x)
1/xln(a)
(d/dx)sinx
cos(x)
(d/dx)cosx
-sin(x)
(d/dx)tanx
sec²x
(d/dx)csc(x)
-cscxcotx
(d/dx)secx
secxtanx
(d/dx)cotx
-csc²x
(d/dx)[f(x)^r
r[f(x)]^r-1 *f(x)
(d/dx)a^f(x)
f’(x)* a^f(x)*ln(a)
(d/dx)e^f(x)
f’(x)e^f(x)
(d/dx)ln(f(x))
f’(x)/f(x)
(d/dx)loga(f(x))
f’(x)/f(x)ln(a)
(d/dx)sin(f(x))
f’(x)cos(f(x))
(d/dx)cos(f(x))
-f’(x)sin(f(x))
(d/dx)tan(f(x))
f’(x)sec²(f(x))
(d/dx)csc(f(x))
-f’(x)csc(f(x))cot(f(x))
(d/dx)sec(f(x))
f’(x)sec(f(x))tan(f(x))
(d/dx)cot(f(x))
-f’(x)csc²(f(x))