1/16
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
excel data analysis
Basic calculationÂ
Auto-filling cells (down and right)
Formatting graphsÂ
Adding tred linesÂ
Simple macrosÂ
Basic stats
python calculations
Basic mathÂ
Adding items to lists and dictionariesÂ
Open .csv fileÂ
Idex series (array) from dataframe (spreadsheet)
Basic statsÂ
Indexing items from series and arrayÂ
Plotting data and simple formatting
convert samples to time (s)
= A2+(1/208)
negate angular velocity Y
C2*(-1) where C is the column of angular velocity
find min, max, average, and average of 1000 samples
Max: =max(col:col)
Min: =min(col:col)
Average: =average(col:col)
Average-1000: average(col2:col1002)
area of eclipse
Pi*A*B
A: length of trialÂ
B: angular velocity
t-test
Ttest2-tailed: =TTEST(B2:B2566,C2:C2566,2,2)
Ttest1-tailed: =TTEST(B2:B2566,C2:C2566,1,2)
setting up for data analysis in python
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
basic math in python
x = 3 and y = 5
mult = x*y
div = x/y
add = x+y
sub = x-y
square = x**2
squareRoot = np.sqrt(x)
adding data to list and dictionaries in python
list1 = [mult,div,add,sub,square,squareRoot]
print(list1)
dict1 = {'multiply':mult,'divide':div,'addition':add,'subtraction':sub,'exponentiation':square,'square root':squareRoot}
print(dict1)
importing csv data into python
data = pd.read_csv('C:/Users/Drew/Documents/GitHub/MMRL/EPHE-341-labs/IMU Data.csv')Â # Enter file location from your computer
calculating basic stats
maximum = data['Angular Velocity Y (rad/s)'].max()
minimum = data['Angular Velocity Y (rad/s)'].min()
average = data['Angular Velocity Y (rad/s)'].mean()
stats = {'max':maximum, 'min':minimum, 'mean':average}
index an element of a series
tenth = data['Angular Velocity Y (rad/s)'].iloc[9]
convert pandas series to lumpy array
array = data['Angular Velocity Y (rad/s)'].to_numpy()
index an element of an array
tenthArray = array[(9)]
plotting examples
#Most basic plot, using plt.plot()
plt.plot(data['Angular Velocity Y (rad/s)'])
#Since our signal is negated (upside down) we can correct this by negating the whole series
dataNegate = data['Angular Velocity Y (rad/s)']*-1
#A bit more complex, using subplots we can create abd display multiple graphs
#We will also change the color
#Now we can use the newly created negated data set
fig1, ax1 = plt.subplots()
ax1.plot(dataNegate, color='red')
#Now we can change some of the features of the graph and label the axes
fig2, ax2 = plt.subplots()
ax2.plot(dataNegate, color = 'teal', label= 'Walking Gyro Data')
ax2.set_xlabel("Samples (#)")
ax2.set_ylabel("Angular Velocity (rad/s)")
fig2.set_size_inches(12, 8, forward=True)
fig2.set_dpi = 300
print(list1)
print(dict1)
print(stats)