intro to data analysis

0.0(0)
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/16

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

17 Terms

1
New cards

excel data analysis

  • Basic calculation 

  • Auto-filling cells (down and right)

  • Formatting graphs 

  • Adding tred lines 

  • Simple macros 

  • Basic stats

2
New cards

python calculations

  • Basic math 

  • Adding items to lists and dictionaries 

  • Open .csv file 

  • Idex series (array) from dataframe (spreadsheet)

  • Basic stats 

  • Indexing items from series and array 

  • Plotting data and simple formatting

3
New cards

convert samples to time (s)

= A2+(1/208)

4
New cards

negate angular velocity Y

C2*(-1) where C is the column of angular velocity

5
New cards

find min, max, average, and average of 1000 samples

  1. Max: =max(col:col)

  2. Min: =min(col:col)

  3. Average: =average(col:col)

  4. Average-1000: average(col2:col1002)

6
New cards

area of eclipse

  • Pi*A*B

    • A: length of trial 

    • B: angular velocity

7
New cards

t-test

  • Ttest2-tailed: =TTEST(B2:B2566,C2:C2566,2,2)

  • Ttest1-tailed: =TTEST(B2:B2566,C2:C2566,1,2)

8
New cards

setting up for data analysis in python

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

9
New cards

basic math in python

  • x = 3 and y = 5

    • mult = x*y

    • div = x/y

    • add = x+y

    • sub = x-y

    • square = x**2

    • squareRoot = np.sqrt(x)

10
New cards

adding data to list and dictionaries in python

list1 = [mult,div,add,sub,square,squareRoot]

print(list1)

dict1 = {'multiply':mult,'divide':div,'addition':add,'subtraction':sub,'exponentiation':square,'square root':squareRoot}

print(dict1)

11
New cards
12
New cards

importing csv data into python

data = pd.read_csv('C:/Users/Drew/Documents/GitHub/MMRL/EPHE-341-labs/IMU Data.csv')  # Enter file location from your computer

13
New cards

calculating basic stats

maximum = data['Angular Velocity Y (rad/s)'].max()

minimum = data['Angular Velocity Y (rad/s)'].min()

average = data['Angular Velocity Y (rad/s)'].mean()

stats = {'max':maximum, 'min':minimum, 'mean':average}

14
New cards

index an element of a series

tenth = data['Angular Velocity Y (rad/s)'].iloc[9]

15
New cards

convert pandas series to lumpy array


array = data['Angular Velocity Y (rad/s)'].to_numpy()

16
New cards

index an element of an array

tenthArray = array[(9)]

17
New cards

plotting examples

#Most basic plot, using plt.plot()

plt.plot(data['Angular Velocity Y (rad/s)'])

#Since our signal is negated (upside down) we can correct this by negating the whole series

dataNegate = data['Angular Velocity Y (rad/s)']*-1

#A bit more complex, using subplots we can create abd display multiple graphs

#We will also change the color

#Now we can use the newly created negated data set

fig1, ax1 = plt.subplots()

ax1.plot(dataNegate, color='red')

#Now we can change some of the features of the graph and label the axes

fig2, ax2 = plt.subplots()

ax2.plot(dataNegate, color = 'teal', label= 'Walking Gyro Data')

ax2.set_xlabel("Samples (#)")

ax2.set_ylabel("Angular Velocity (rad/s)")

fig2.set_size_inches(12, 8, forward=True)

fig2.set_dpi = 300

print(list1)

print(dict1)

print(stats)