Linear function
y = x
Quadratic Function
y = x^2
Cubic Function
y = x^3
Absolute Value Function
y = |x|
Absolute Value Function
y = sqrt(x^2)
Square Root Function
y = sqrt(x)
Reciprocal Function
y = 1/x
Sine Function
y = sin(x)
Cosine Function
y = cos(x)
Tangent Function
y = tan(x)
Natural Base Function
y = e^x
Natural Logarithm
y = ln(x)
Reciprocal Squared Function
y = 1 / x^2
Semicircle Function
y = sqrt(a^2 - x^2)
y = |x| / x
x = ±1
ln e
1
ln 1
0
ln(mn)
ln m + ln n
ln(m/n)
ln m - ln n
ln(m^n)
n ln m
e^m * e^n
e^(m+n)
(a + b)^2
a^2 + 2ab + b^2
(a - b)^2
a^2 - 2ab + b^2
(a + b)(a - b)
a^2 - b^2
csc(x)
1/sin(x)
sec(x)
1/cos(x)
cot(x)
cos(x)/sin(x)
tan(x)
sin(x)/cos(x)
cot(x)
1/tan(x)
sin^2(x) + cos^2(x)
1
1 + tan^2(x)
sec^2(x)
1+cot^2(x)
csc^2(x)
Even function
Symmetric about the y-axis
Odd function
Symmetric about the origin
Vertical Asymptote
lim (x -> c) f(x) = ±∞
Horizontal Asymptote
lim (x -> ±∞) f(x) = c
When we can use dominant terms to find a limit?
When x approaches positive or negative infinity
Conditions for Continuity
lim (x -> c) f(x) exists
f(c) is defined
lim (x -> c) f(x) = f(c)
Conditions for Intermediate Value Theorem
f(x) is continuous on [a, b]
f(a) ≠ f(b)
By IVT, there exists a value c where f(c) = k on the domain a ≤ c ≤ b and the range f(a) ≤ k ≤ f(b) since f(x) takes on every value in the interval
f’(x)
f'(a) = lim (h -> 0) [ f(a + h) - f(a) ] / h
Point-Slope Form
y - y1 = m(x - x1)
d/dx[x^n]
n*x^(n-1)
d/dx[u(x)v(x)]
u'(x)v(x) + u(x)v'(x)
d/dx[u(x)/v(x)]
(u'v - uv')/v^2
d/dx[sin(u)]
cos(u) * u’
d/dx[cos(u)]
-sin(u) * u’
d/dx[tan(u)]
sec^2(u) * u’
d/dx[cot(u)]
-csc^2(u) * u’
d/dx[sec(u)]
sec(u)tan(u) * u’
d/dx[csc(u)]
-csc(x)cot(x) * u’
d/dx[e^u]
e^u * u’
d/dx[ln(u)]
u’ / u
d/dx[a^u]
a^u * ln(a) * u’
d/dx[log_a(u)]
u’ / (u * ln(a))
d/dx[arcsin(u)]
u’ / sqrt(1 - x²)
d/dx[arccos(u)]
u’ / sqrt(1 - x²)
d/dx[arctan(u)]
u’ / (1 + u²)
d/dx[arccot(u)]
-u’ / (1 + u²)
d/dx[arcsec(x)]
u' / |u|sqrt(u² - 1)
d/dx[arccsc(u)]
-u' / |u|sqrt(u² - 1)
d/dx[sqrt(u)]
u' / (2sqrt(u))
d/dx[1/x^2]
-2/x^3
f’(x) > 0
Function is decreasing
f’(x) < 0
Function is increasing
f’(x) = 0 or DNE
Critical values of x
f’(x) = 0 or DNE and sign of f’(x) changes from + to -
Relative maximum
f’(x) = 0 or DNE and sign of f’(x) changes from - to +
Relative minimum
When do we need to check endpoints?
When finding absolute max or min
Position function
x(t)
Velocity function
v(t) = x'(t)
Acceleration function
a(t) = v’(t) = x''(t)
Speed
| velocity |
Particle is speeding up
when the velocity and acceleration have the same sign
Particle is slowing down
when the velocity and acceleration have different signs
Particle is moving rightward
when velocity is positive
Particle is moving leftward
when velocity is negative
Function is concave up
f’’(x) > 0
Function is concave down
f''(x) < 0
Conditions for Rolle’s Theorem
Continous on closed interval [a, b]
Differentiable on open interval (a, b)
f(a) = f(b)
There is at least one number x = c in (a, b) such that f’(c) = 0
Right Riemann Sum (RRAM)
(b - a) / n (n is number of right outputs)
Left Riemann Sum (LRAM)
(b - a) / n (n is number of left outputs)
Midpoint Riemann Sum (MRAM)
(b - a) / n (n is number of midpoints of outputs)
Trapezoidal Rule for Area
(b - a) / n * (f(a) + f(b) + 2 * sum of f(xi)) for n subintervals.
∫ 5 dx
5x + C
∫ sin(x) dx
-cos(x) + C
∫ cos(x) dx
sin(x) + C
∫ sec^2(x)
tan(x) + C
∫ csc^2(x)
-cot(x) + C
∫ sec(x)tan(x) dx
sec(x) + C
∫ csc(x)cot(x)
-csc(x) + C
∫ 1/x dx
ln|x| + C
∫ x^-1 dx
ln|x| + C
∫ x^-2 dx
1/x + C
∫ e^x
e^x + C
∫ 3^x dx
(3^x / ln(3)) + C
∫ ln(u) du
u ln(u) - u + C
∫ sin(kx) dx
-1/k cos(kx) + C
∫ e^(kx) dx
(1/k)e^(kx) + C
∫ 1 / (3x + 4) dx
(1/3) ln|3x + 4| + C
∫ 1 / (1 + x²) dx
arctan(x) + C