cellular respiration: electron transport chain

0.0(0)
studied byStudied by 0 people
0.0(0)
full-widthCall with Kai
GameKnowt Play
New
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/14

flashcard set

Earn XP

Description and Tags

1/10/25

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

15 Terms

1
New cards

Electron transport chain overview

  • 4th step of cellular respiration

  • Electron carriers loaded with electrons and protons (H+) from krebs cycle 

  • Move to etc: chain like series of steps; staircase

  • Electrons move through stairs and drop downwards to next protein 

  • Electrons move through redox reactions 

  • Protons transferred to intermembrane space 

  • Oxygen, very EN element, pulls electrons and protons in at bottom of stair case

  • Oxygen and proton becomes water

  • Occurs in inner membrane 

  • Forms a total of 34 atp

<ul><li><p><span style="background-color: transparent;">4th step of cellular respiration</span></p></li><li><p><span style="background-color: transparent;">Electron carriers loaded with electrons and protons (H+) from krebs cycle&nbsp;</span></p></li><li><p><span style="background-color: transparent;">Move to etc: chain like series of steps; staircase</span></p></li><li><p><span style="background-color: transparent;">Electrons move through stairs and drop downwards to next protein&nbsp;</span></p></li><li><p><span style="background-color: transparent;">Electrons move through redox reactions&nbsp;</span></p></li><li><p><span style="background-color: transparent;">Protons transferred to intermembrane space&nbsp;</span></p></li><li><p><span style="background-color: transparent;">Oxygen, very EN element, pulls electrons and protons in at bottom of stair case</span></p></li><li><p><span style="background-color: transparent;">Oxygen and proton becomes water</span></p></li><li><p><span style="background-color: transparent;">Occurs in inner membrane&nbsp;</span></p></li><li><p><span style="background-color: transparent;">Forms a total of 34 atp</span></p></li></ul><p></p>
2
New cards

components of etc

  • Complex I

  • Complex II
    Complex III
    Complex IV

  • CoQ and CytC are helper molecules 

<ul><li><p><span style="background-color: transparent;">Complex I</span></p></li><li><p><span style="background-color: transparent;">Complex II<br>Complex III<br>Complex IV</span></p></li><li><p><span style="background-color: transparent;">CoQ and CytC are helper molecules&nbsp;</span></p></li></ul><p></p>
3
New cards

Complex I

  • NADH with potential energy is oxidated

  • Electrons are given away

  • Energy from electrons pumps protons into intermembrane space

  • 4 H+ are transported per 2 electrons 

  • One electron moves at a time; assembly line 

  • Left over electrons moved by helper molecule to next complex

  • Theoretical: 1 NADH = 3 ATP

<ul><li><p><span style="background-color: transparent;">NADH with potential energy is oxidated</span></p></li><li><p><span style="background-color: transparent;">Electrons are given away</span></p></li><li><p><span style="background-color: transparent;">Energy from electrons pumps protons into intermembrane space</span></p></li><li><p><span style="background-color: transparent;">4 H+ are transported per 2 electrons&nbsp;</span></p></li><li><p><span style="background-color: transparent;">One electron moves at a time; assembly line&nbsp;</span></p></li><li><p><span style="background-color: transparent;">Left over electrons moved by helper molecule to next complex</span></p></li><li><p><span style="background-color: transparent;">Theoretical: 1 NADH = 3 ATP</span></p></li></ul><p></p>
4
New cards

Complex II

  • Not transmembrane protein

  • FADH2 gives electrons

  • 1 FADH2 makes 2 atp, not as efficient as NADH 

  • Energy and electrons continue to be moved across

  • No protons pumped: oxidation of FADH2 isnt strong enough 

  • FADH2 supplies more electrons to coQ so more oxygen is reduced to water

<ul><li><p><span style="background-color: transparent;">Not transmembrane protein</span></p></li><li><p><span style="background-color: transparent;">FADH<sub>2</sub> gives electrons</span></p></li><li><p><span style="background-color: transparent;">1 FADH<sub>2</sub> makes 2 atp, not as efficient as NADH&nbsp;</span></p></li><li><p><span style="background-color: transparent;">Energy and electrons continue to be moved across</span></p></li><li><p><span style="background-color: transparent;">No protons pumped: oxidation of FADH2 isnt strong enough&nbsp;</span></p></li><li><p><span style="background-color: transparent;">FADH2 supplies more electrons to coQ so more oxygen is reduced to water</span></p></li></ul><p></p>
5
New cards

Complex III

  • Electrons and energy taken and pushed onwards

  • More H+ pumped into concentration gradient 

  • 4 protons pumped out per transfer of 4 electrons

  • two cycles required as CytC can only carry one electron at a time 

<ul><li><p><span style="background-color: transparent;">Electrons and energy taken and pushed onwards</span></p></li><li><p><span style="background-color: transparent;">More H+ pumped into concentration gradient&nbsp;</span></p></li><li><p><span style="background-color: transparent;">4 protons pumped out per transfer of 4 electrons</span></p></li><li><p><span style="background-color: transparent;">two cycles required as CytC can only carry one electron at a time&nbsp;</span></p></li></ul><p></p>
6
New cards

Complex IV

  • Oxygen at the bottom pulling electrons to bottom of staircase/etc

  • Oxygen is what allows etc to function

  • Last pump of protons into intermembrane space

  • Oxygen and proton forms water

<ul><li><p><span style="background-color: transparent;">Oxygen at the bottom pulling electrons to bottom of staircase/etc</span></p></li><li><p><span style="background-color: transparent;">Oxygen is what allows etc to function</span></p></li><li><p><span style="background-color: transparent;">Last pump of protons into intermembrane space</span></p></li><li><p><span style="background-color: transparent;">Oxygen and proton forms water</span></p></li></ul><p></p>
7
New cards

Complex functions summary

  • Complex I: NADH pumps protons

  • Complex II: FADH2 moved through to CoQ, no pumping protons 

  • Complex III: pumps a lot more protons

  • Complex IV: last proton pump, water formed

<ul><li><p><span style="background-color: transparent;">Complex I: NADH pumps protons</span></p></li><li><p><span style="background-color: transparent;">Complex II: FADH<sub>2</sub> moved through to CoQ, no pumping protons&nbsp;</span></p></li><li><p><span style="background-color: transparent;">Complex III: pumps a lot more protons</span></p></li><li><p><span style="background-color: transparent;">Complex IV: last proton pump, water formed</span></p></li></ul><p></p>
8
New cards

Atp produced from etc (etc tally)

  • Per one molecule glucose

  • 2 NADH from glycolysis -> 6 ATP

  • 2 NADH from Pyruvate oxidation -> 6 ATP

  • 6 NADH from Krebs -> 18 ATP

  • 2 FADH2 from Krebs -> 4 ATP 

  • Total: 34 atp

9
New cards

Total atp yield across cellular respiration

  • Per one molecule glucose

  • 2 ATP from Glycolysis

  • 2 ATP from Krebs

  • 34 ATP from ETC 

  • Theoretical total yield: 38 atp 

  • May be lower due to proton leaking out of intermembrane space, or free energy needed elsewhere before ATP is made

<ul><li><p><span style="background-color: transparent;">Per one molecule glucose</span></p></li><li><p><span style="background-color: transparent;">2 ATP from Glycolysis</span></p></li><li><p><span style="background-color: transparent;">2 ATP from Krebs</span></p></li><li><p><span style="background-color: transparent;">34 ATP from ETC&nbsp;</span></p></li><li><p><span style="background-color: transparent;">Theoretical total yield: 38 atp&nbsp;</span></p></li><li><p><span style="background-color: transparent;">May be lower due to proton leaking out of intermembrane space, or free energy needed elsewhere before ATP is made</span></p></li></ul><p></p>
10
New cards

Atp synthase

  • transport protein and enzyme

  • after four complexes

  • Movement of electrons and protons through complex I to IV causes high concentration in intermembrane space

  • Protons flow through atp synthase through diffusion: high to low concentration

  • Atp synthase spins like a turbine and produces atp 

  • Oxidative phosphorylation occurs: moving phosphate group indirectly through a chain of reaction

  • energy from spinning allows adp to bind to phosphate to make atp

<ul><li><p>transport protein and enzyme</p></li><li><p>after four complexes</p></li><li><p><span style="background-color: transparent;">Movement of electrons and protons through complex I to IV causes high concentration in intermembrane space</span></p></li><li><p><span style="background-color: transparent;">Protons flow through atp synthase through diffusion: high to low concentration</span></p></li><li><p><span style="background-color: transparent;">Atp synthase spins like a turbine and produces atp&nbsp;</span></p></li><li><p><span style="background-color: transparent;">Oxidative phosphorylation occurs: moving phosphate group indirectly through a chain of reaction</span></p></li><li><p><span style="background-color: transparent;">energy from spinning allows adp to bind to phosphate to make atp</span></p></li></ul><p></p>
11
New cards

Why do we breathe oxygen

  • Oxygen is essential for the electron transport chain to function

  • Since it is high electronegativaty, it pulls protons and electrons through staircase

  • At complex IV, oxygen accepts electrons and protons to form water (waste product)

  • This allows the cycle to continue and more atp to be produced

  • Without atp our cells would die 

12
New cards

Steps of etc

  • complex I

  • complex II

  • CoQ

  • Compelx III

  • CytoC

  • Complex IV

  • atp synthase

13
New cards

Why is mitochondria called the power house of the cell?


  • Primary site of cellular respiration 

  • Atp is our body’s energy currency

  • Cellular respiration occurs outside of then inside of mitochondria

  • It is essential for atp to form

  • It powers our cells and us

14
New cards

Move electrons is the same as


Moving electricity which is why energy is created

15
New cards

chemiosmosis

  • process of ions move across semipermeable membrane through atp synthase

  • usually portons

  • release energy to drive cellular work

  • synthesis of atp