CALC 2 - Trig sub to partial fractions

0.0(0)
studied byStudied by 0 people
GameKnowt Play
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/44

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

45 Terms

1
New cards
sin(x) derivative
cos(x)
2
New cards
cos(x) derivative
-sin(x)
3
New cards
tan(x) derivative
sec²(x)
4
New cards
cot(x) derivative
-csc²(x)
5
New cards
sec(x) derivative
sec(x)tan(x)
6
New cards
csc(x) derivative
-csc(x)cot(x)
7
New cards
∫sin(x) dx
-cos(x) + C
8
New cards
∫cos(x) dx
sin(x) + C
9
New cards
∫tan(x) dx
-ln|cos(x)| + C
10
New cards
∫cot(x) dx
ln|sin(x)| + C
11
New cards
∫sec(x) dx
ln|sec(x)+tan(x)| + C
12
New cards
∫csc(x) dx
-ln|csc(x)+cot(x)| + C
13
New cards
∫sec³(x) dx
½(sec(x)tan(x)+ln|sec(x)+tan(x)|)+C
14
New cards
∫csc³(x) dx
-½(csc(x)cot(x)+ln|csc(x)+cot(x)|)+C
15
New cards
arcsin(x) derivative
1/√(1-x²)
16
New cards
arccos(x) derivative
-1/√(1-x²)
17
New cards
arctan(x) derivative
1/(1+x²)
18
New cards
arccot(x) derivative
-1/(1+x²)
19
New cards
arcsec(x) derivative
1/(|x|√(x²-1))
20
New cards
arccsc(x) derivative
-1/(|x|√(x²-1))
21
New cards
∫dx/√(1-x²)
arcsin(x)+C
22
New cards
∫-dx/√(1-x²)
arccos(x)+C
23
New cards
∫dx/(1+x²)
arctan(x)+C
24
New cards
∫-dx/(1+x²)
arccot(x)+C
25
New cards
∫dx/(x√(x²-1))
arcsec(x)+C
26
New cards
∫-dx/(x√(x²-1))
arccsc(x)+C
27
New cards
sin power odd strategy
save one sin(x) then use u=cos(x)
28
New cards
cos power odd strategy
save one cos(x) then use u=sin(x)
29
New cards
sin and cos both even strategy
use half-angle identities
30
New cards
sec power even strategy
save sec²(x) then use u=tan(x)
31
New cards
sec and tan both odd strategy
save sec(x)tan(x) then use u=sec(x)
32
New cards
sec odd tan even strategy
convert tangents to secants and expand
33
New cards
cot power odd strategy
save csc(x)cot(x) then use u=csc(x)
34
New cards
csc power even strategy
save csc²(x) then use u=cot(x)
35
New cards
∫csc(x) dx
-ln|csc(x)+cot(x)|+C
36
New cards
∫csc³(x) dx
-½(csc(x)cot(x)+ln|csc(x)+cot(x)|)+C
37
New cards
trig sub √(a²-u²)
u=a·sinθ → √(a²-u²)=a·cosθ
38
New cards
trig sub √(a²+u²)
u=a·tanθ → √(a²+u²)=a·secθ
39
New cards
trig sub √(u²-a²)
u=a·secθ → √(u²-a²)=a·tanθ
40
New cards
quadratic ax²+bx+c integral
complete the square then trig sub
41
New cards
∫dx/(a²+x²)
(1/a)arctan(x/a)+C
42
New cards
partial fractions distinct linear
A/(ax+b)+B/(cx+d)+…
43
New cards
partial fractions repeated linear
A₁/(ax+b)+A₂/(ax+b)²+…+Aₙ/(ax+b)ⁿ
44
New cards
partial fractions irreducible quadratic
(Ax+B)/(ax²+bx+c)
45
New cards
partial fractions repeated irreducible quadratic
(A₁x+B₁)/(ax²+bx+c)+…+(Aₙx+Bₙ)/(ax²+bx+c)ⁿ