4.2 Unit circle and Values and tricks

0.0(0)
studied byStudied by 2 people
0.0(0)
full-widthCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/31

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

32 Terms

1
New cards

UNIT CIRCLE FORMULA

x²+y²=1

<p>x²+y²=1</p>
2
New cards

On Unit circle what are Sin and Cos

Sin=y-value

Cos-x-value

3
New cards

ON UNIT CIRCLE WHAT ARE VALUES FOR ALL TRIG FUNCTIONS IN X and Y terms

sinx=y cosx=x tanx=y/x. x cannot equal 0. cotx= x/y. y cannot equal 0. secx= 1/cos. cos cannot be 0. cscx=1/sin. sin cannot be 0

<p>sinx=y    cosx=x    tanx=y/x.  x cannot equal 0.   cotx= x/y.  y cannot equal 0.   secx= 1/cos. cos cannot be 0.  cscx=1/sin. sin cannot be 0</p>
4
New cards

Practice problem: Find 4 values of theta (2 + and 2- ) that satisfy the following equation: cos theta =( -square root 3 /2) Give your answer in radians

5π/6, 7π/6, -5π/6, -7π/6

5
New cards

Practice problem: evaluate the six rtrig functions where sec(theta)=-17/8 and sin theta >0

sin(theta)=15/17

cos(theta)= -8/17

tan(theta)=-15/8)

sec(theta)=-17/8

csc(theta) = 17/15

cot(theta) -8/15

6
New cards

Radians: 0, sin θ: 0, cos θ: 1, tan θ: 0, csc θ: undefined, sec θ: 1, cot θ: undefined

7
New cards

30°

Radians: π/6, sin θ: 1/2, cos θ: √3/2, tan θ: √3/3, csc θ: 2, sec θ: 2√3/3, cot θ: √3

8
New cards

45°

Radians: π/4, sin θ: √2/2, cos θ: √2/2, tan θ: 1, csc θ: √2, sec θ: √2, cot θ: 1

9
New cards

60°

Radians: π/3, sin θ: √3/2, cos θ: 1/2, tan θ: √3, csc θ: 2√3/3, sec θ: 2, cot θ: √3/3

10
New cards

90°

Radians: π/2, sin θ: 1, cos θ: 0, tan θ: undefined, csc θ: 1, sec θ: undefined, cot θ: 0

11
New cards

120°

Radians: 2π/3, sin θ: √3/2, cos θ: -1/2, tan θ: -√3, csc θ: 2√3/3, sec θ: -2, cot θ: -√3/3

12
New cards

135°

Radians: 3π/4, sin θ: √2/2, cos θ: -√2/2, tan θ: -1, csc θ: √2, sec θ: -√2, cot θ: -1

13
New cards

150°

Radians: 5π/6, sin θ: 1/2, cos θ: -√3/2, tan θ: -√3/3, csc θ: 2, sec θ: -2√3/3, cot θ: -√3

14
New cards

180°

Radians: π, sin θ: 0, cos θ: -1, tan θ: 0, csc θ: undefined, sec θ: -1, cot θ: undefined

15
New cards

210°

Radians: 7π/6, sin θ: -1/2, cos θ: -√3/2, tan θ: √3/3, csc θ: -2, sec θ: -2√3/3, cot θ: √3

16
New cards

225°

Radians: 5π/4, sin θ: -√2/2, cos θ: -√2/2, tan θ: 1, csc θ: -√2, sec θ: -√2, cot θ: 1

17
New cards

240°

Radians: 4π/3, sin θ: -√3/2, cos θ: -1/2, tan θ: √3, csc θ: -2√3/3, sec θ: -2, cot θ: √3/3

18
New cards

270°

Radians: 3π/2, sin θ: -1, cos θ: 0, tan θ: undefined, csc θ: -1, sec θ: undefined, cot θ: 0

19
New cards

300°

Radians: 5π/3, sin θ: -√3/2, cos θ: 1/2, tan θ: -√3, csc θ: -2√3/3, sec θ: 2, cot θ: -√3/3

20
New cards

315°

Radians: 7π/4, sin θ: -√2/2, cos θ: √2/2, tan θ: -1, csc θ: -√2, sec θ: √2, cot θ: -1

21
New cards

330°

Radians: 11π/6, sin θ: -1/2, cos θ: √3/2, tan θ: -√3/3, csc θ: -2, sec θ: 2√3/3, cot θ: -√3

22
New cards

360°

Radians: 2π, sin θ: 0, cos θ: 1, tan θ: 0, csc θ: undefined, sec θ: 1, cot θ: undefined

23
New cards

Quadrant I

sin: +, cos: +, tan: +

24
New cards

Quadrant II

sin: +, cos: -, tan: -

25
New cards

Quadrant III

sin: -, cos: -, tan: +

26
New cards

Quadrant IV

sin: -, cos: +, tan: -

27
New cards

Trick for knowing what is positive and negative

ALL STUDENTS TAKE CALCULUS

All are positive in first quadrant

Only Sin is positive in second quadrant

Only Tan is positive in 3rd quadrant

Only cos is positive in 4th quadrant

28
New cards

What is a refrence angle

The angle that is made with the x-axis, use angle with that to find out.

29
New cards

What are coterminal Angles

and why do they matter

Coterminal angles are angles that share the same initial and terminal sides on the unit circle, meaning they end in the same position. You find them by adding or subtracting full rotations: 360 degrees or 2π radians.

All trig function values (sin, cos, tan, etc.) are the same for coterminal angles because they land at the same point on the unit circle.

30
New cards

30° Family (30 degree refrence angle)

30°, 150°, 210°, 330°; π/6, 5π/6, 7π/6, 11π/6; sin: ±½, cos: ±√3/2, tan: ±√3/3

31
New cards

45° Family (45 degree refrence angle)

45°, 135°, 225°, 315°; π/4, 3π/4, 5π/4, 7π/4; sin: ±√2/2, cos: ±√2/2, tan: ±1

32
New cards

60° Family (60 degree refrence angle)

60°, 120°, 240°, 300°; π/3, 2π/3, 4π/3, 5π/3; sin: ±√3/2, cos: ±½, tan: ±√3