1/45
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
pythagorean identities (sin and cos)
sin²x+cos²x=1
pythagorean identities (tan and sec)
1+tan²x=sec²x
pythagorean identities (cot and csc)
1+cot²x=csc²x
tanx quotient identity
tanx=sinx/cosx
cotx quotient identity
cotx=cosx/sinx
sin(-x)
-sinx
cos (-x)
cosx
tan (-x)
-tanx
csc(-x)
-cscx
sec(-x)
secx
cot(-x)
-cotx
sin (a+b)
(sina)(cosb)+(cosa)(sinb)
sin(a-b)
(sina)(cosb)-(cosa)(sinb)
cos(a+b)
(cosa)(cosb)-(sina)(sinb)
cos(a-b)
(cosa)(cosb)+(sina)(sinb)
tan (a+b)
tan a +tan b/1-(tan a)(tan b)
tan (a-b)
tan a-tan b/1+(tan a)(tan b)
sin (2x)
2sinxcosx
cos (2x)
cos²x-sin²x
tan (2x)
2tanx/1-tan²x
slope of terminal ray of an angle
tangent function
all real numbers, x does not equal to pie over two + pie k
domain of tan
all real numbers
range of tan
pie
period of tan
[-1,1]
domain of arcsinx
[-pie/2, pie/2]
range of arcsinx
[-1,1]
domain of arccosx
[0,pie]
range of arccosx
(-infinity,infinity)
domain of arctanx
(-pie/2, pie/2)
range of arctanx
(-infinity, -1] U [1, infinity)
range of cscx
(-infinity, -1] U [1, infinity)
range of secx
(-infinity, infinity)
range of cotx
0, pie, 2pie
asymptote of cscx
pie/2, 3pie/2, 5pie/2
asymptote of secx
0, pie, 2pie
asymptote of cotx
x=rcostheta y=rsintheta
polar to cartesian
r = root x²+y² theta= tan^-1 (y/x)
cartesian to polar
n petals/2n petals
n is odd/n is even
2pi/# of petals
distance between petals
pie/2n
1st petal sin
z=a+bi
(a,b)
z=r(costheta+sinttheta)
(r, theta)
a/b=1
cardoid
1<a/b<2
dimpled cardoid
a/b<1
limacon