Chapter 13 - Exponential Functions and Logarithms

0.0(0)
studied byStudied by 1 person
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/16

flashcard set

Earn XP

Description and Tags

Logarithm master in a nutshell!

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

17 Terms

1
New cards

What is a power, base, and exponent?
List the index laws and key rules for powers.

  • A power is written as aⁿ, where:

    • a is the base (non-zero)

    • n is the exponent or index

Index Laws (for a, b ≠ 0 and integers m, n):

a^m \times a^n = a^{m+n}

\frac{a^m}{a^n} = a^{m-n}

(a^m)^n = a^{mn}

(ab)^n = a^n \times b^n

\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}

Special rules:

  • a^0 = 1 \quad (a \neq 0)

    a^{-n} = \frac{1}{a^n}, \quad \frac{1}{a^{-n}} = a^n

    0^n = 0 \quad \text{for } n > 0, \quad 0^0 \text{ is undefined}

2
New cards

What does a^{\frac{1}{n}} mean?
How do index laws extend to rational indices?

  • For a > 0 and n ∈ ℕ:
    a^{\frac{1}{n}} = \sqrt[n]{a} \quad \Rightarrow \quad \left(a^{\frac{1}{n}}\right)^n = a

  • Special cases:

    • 0^{\frac{1}{n}} = 0

    • If n is odd and a < 0, a^{\frac{1}{n}}is defined (result is negative)

Extended Index Laws:

a^{\frac{m}{q}} \times a^{\frac{n}{p}} = a^{\frac{m}{q} + \frac{n}{p}}

\frac{a^{\frac{m}{q}}}{a^{\frac{n}{p}}} = a^{\frac{m}{q} - \frac{n}{p}}

\left(a^{\frac{m}{q}}\right)^{\frac{n}{p}} = a^{\frac{m}{q} \times \frac{n}{p}}

3
New cards

Exponential Functions & Transformations

  • For y = aˣ where a > 1, the graph has:

    • The x-axis as an asymptote.

    • A y-intercept at (0, 1).

    • Positive y-values with no x-axis intercept.

    • All graphs of this form are dilations of each other from the y-axis.

  • For y = aˣ where 0 < a < 1, the graph decays similarly but reflects the opposite behavior.

  • If f(x) = aˣ and g(x) = a⁻ˣ, then g(x) is the reflection of f(x) in the y-axis.

<ul><li><p class="">For <strong>y = aˣ</strong> where <strong>a &gt; 1</strong>, the graph has:</p><ul><li><p class="">The x-axis as an asymptote.</p></li><li><p class="">A y-intercept at (0, 1).</p></li><li><p class="">Positive y-values with no x-axis intercept.</p></li><li><p class="">All graphs of this form are dilations of each other from the y-axis.</p></li></ul></li><li><p class="">For <strong>y = aˣ</strong> where <strong>0 &lt; a &lt; 1</strong>, the graph decays similarly but reflects the opposite behavior.</p></li><li><p class="">If <strong>f(x) = aˣ</strong> and <strong>g(x) = a⁻ˣ</strong>, then <strong>g(x)</strong> is the reflection of <strong>f(x)</strong> in the y-axis.</p></li></ul><p></p>
4
New cards

CAS: Sketching Logarithm Graphs

knowt flashcard image
5
New cards

Solving Exponential Inequalities

To solve an exponential equation without a calculator, express both sides with the same base and equate the exponents (since aˣ = aʸ implies x = y for any base a > 0, a ≠ 1).

Example: 2^{x+1} = 8 \Rightarrow 2^{x+1} = 2^3 \Rightarrow x + 1 = 3 \Rightarrow x = 2

To solve an exponential inequality, follow the same method as an equation and apply the appropriate property:

If a^x > a^y, then:

x > y \quad \text{when} \quad a > 1

x < y \quad \text{when} \quad 0 < a < 1

6
New cards

Laws of Logarithms

  • For a ∈ R⁺ \ {1}, the logarithm function base a is defined as follows:
    aˣ = y is equivalent to logay = x.

  • The expression logay is defined for all positive real numbers y.

  • To evaluate logay, ask the question: "What power of a gives y?"

Laws of Logarithms:

\log_a(mn) = \log_a m + \log_a n

\log_a\left(\frac{m}{n}\right) = \log_a m - \log_a n

\log_a(m^p) = p \log_a m

\log_a(m^{-1}) = - \log_a m

\log_{\frac{1}{a}}(x) = -\log_a x

Specials:

  • \log_a 1 = 0 \quad \text{and} \quad \log_a a = 1

<ul><li><p class="">For <strong>a ∈ R⁺ \ {1}</strong>, the logarithm function base <strong>a</strong> is defined as follows:<br><strong>aˣ = y</strong> is equivalent to <strong>log<sub>a</sub>y = x</strong>.</p></li><li><p class="">The expression <strong>log<sub>a</sub>y</strong> is defined for all <strong>positive real numbers y</strong>.</p></li><li><p class="">To evaluate <strong>log<sub>a</sub>y</strong>, ask the question: "What power of <strong>a</strong> gives <strong>y</strong>?"</p></li></ul><p class=""><strong>Laws of Logarithms:</strong></p><p class=""><strong>$$\log_a(mn) = \log_a m + \log_a n$$  </strong></p><p><strong>$$\log_a\left(\frac{m}{n}\right) = \log_a m - \log_a n$$  </strong></p><p><strong>$$\log_a(m^p) = p \log_a m$$  </strong></p><p><strong>$$\log_a(m^{-1}) = - \log_a m$$  </strong></p><p><strong>$$\log_{\frac{1}{a}}(x) = -\log_a x$$</strong></p><p class=""><strong>Specials:</strong></p><ul><li><p class=""><strong>$$\log_a 1 = 0 \quad \text{and} \quad \log_a a = 1$$</strong></p></li></ul><p></p>
7
New cards

Using logarithms to solve exponential equations and inequalities

Key Concepts:

  • Logarithmic Relationship:
    For a, b, c > 0, where a ≠ 1 and b ≠ 1, we have:
    \log_a c = \frac{\log_b c}{\log_b a}

  • Logarithms and Exponentials:
    If a \in \mathbb{R}^+ \setminus \{1\}and x ∈ R then:

    • a^x = b \Leftrightarrow \log_a b = x

    This property is useful for solving exponential equations and inequalities.

  • Examples:

    2^x = 5 \iff x = \log_2 5

    2^x \geq 5 \iff x \geq \log_2 5

    (0.3)^x = 5 \iff x = \log_{0.3} 5

    (0.3)^x \geq 5 \iff x \leq \log_{0.3} 5

8
New cards

Examples of Solving Exponential Equations

  • Solve 2ˣ = 11:
    x = log₂ 11 ≈ 3.45943.

  • Alternative Method:
    Taking log₁₀ of both sides:

    • \log_{10}(2^x) = \log_{10} 11 \Rightarrow x \log_{10} 2 = \log_{10} 11 \Rightarrow x = \frac{\log_{10} 11}{\log_{10} 2}

      \therefore \log_2 11 = \frac{\log_{10} 11}{\log_{10} 2}

  • Solve 3²ˣ⁻¹ = 28:

    • 2ˣ - 1 = log₃ 28

    • 2ˣ = 1 + log₃ 28

    • x ≈ 2.017.

  • Solve the inequality 0.7ˣ ≥ 0.3:
    Taking log₁₀ of both sides:

    • x \log_{10} 0.7 \geq \log_{10} 0.3 \quad \Rightarrow \quad x \leq \frac{\log_{10} 0.3}{\log_{10} 0.7}

    • x ≈ 3.376 (direction of inequality reversed since log₁₀ 0.7 < 0).

    Alternatively, solve as:
    x ≤ log₀.₇ 0.3.

9
New cards

Exponential Graphs and Logarithms

  • Graph of f(x) = 2 × 10ˣ − 4:

    • Horizontal asymptote at y = −4 as x → −∞.

    • The y-axis intercept is f(0) = −2.

    • The x-axis intercept occurs when f(x) = 0:

      • 2 × 10ˣ − 4 = 0x = log₁₀ 2 ≈ 0.3010.

10
New cards

📊 Properties of Exponential vs Logarithmic Functions

Property

y = aˣ (Exponential)

y = logₐx (Logarithmic)

Domain

ℝ⁺ (x > 0)

Range

ℝ⁺ (y > 0)

Key Point

a⁰ = 1

logₐ1 = 0

End Behavior

x → −∞, y → 0⁺

x → 0⁺, y → −∞

Asymptote

y = 0

x = 0

<table style="min-width: 174px"><colgroup><col style="min-width: 25px"><col style="width: 124px"><col style="min-width: 25px"></colgroup><tbody><tr><th colspan="1" rowspan="1"><p><strong>Property</strong></p></th><th colspan="1" rowspan="1" colwidth="124"><p><strong>y = aˣ</strong> (Exponential)</p></th><th colspan="1" rowspan="1"><p><strong>y = logₐx</strong> (Logarithmic)</p></th></tr><tr><td colspan="1" rowspan="1"><p>Domain</p></td><td colspan="1" rowspan="1" colwidth="124"><p>ℝ</p></td><td colspan="1" rowspan="1"><p>ℝ⁺ (x &gt; 0)</p></td></tr><tr><td colspan="1" rowspan="1"><p>Range</p></td><td colspan="1" rowspan="1" colwidth="124"><p>ℝ⁺ (y &gt; 0)</p></td><td colspan="1" rowspan="1"><p>ℝ</p></td></tr><tr><td colspan="1" rowspan="1"><p>Key Point</p></td><td colspan="1" rowspan="1" colwidth="124"><p>a⁰ = 1</p></td><td colspan="1" rowspan="1"><p>logₐ1 = 0</p></td></tr><tr><td colspan="1" rowspan="1"><p>End Behavior</p></td><td colspan="1" rowspan="1" colwidth="124"><p>x → −∞, y → 0⁺</p></td><td colspan="1" rowspan="1"><p>x → 0⁺, y → −∞</p></td></tr><tr><td colspan="1" rowspan="1"><p>Asymptote</p></td><td colspan="1" rowspan="1" colwidth="124"><p>y = 0</p></td><td colspan="1" rowspan="1"><p>x = 0</p></td></tr></tbody></table><p></p>
11
New cards

🔄 Transformations Summary (General Form)

Type

Example

Effect

Shift Right

y = logₐ(x − h)

→ right h units

Shift Left

y = logₐ(x + h)

→ left h units

Shift Up

y = logₐ(x) + k

↑ up k units

Shift Down

y = logₐ(x) − k

↓ down k units

Stretch (vertical)

y = a·logₐ(x), a > 1

↑ vertical stretch by factor a

Compress (vertical)

y = a·logₐ(x), 0 < a < 1

↓ vertical compression by factor a

Horizontal Compress

y = logₐ(bx), b > 1

→ compress across y-axis (divide x by b)

Horizontal Stretch

y = logₐ(bx), 0 < b < 1

→ stretch across y-axis (multiply x by 1/b)

Reflect in x-axis

y = −logₐ(x)

reflect in x-axis

Reflect in y-axis

y = logₐ(−x)

reflect in y-axis

🔁 Inverse Functions:

y = a^x \iff x = \log_a y
Reflect across the line y = x

If a > 0 and a ≠ 1, then:

\log_a (a^x) = x \quad \text{for all real } x

a^{\log_a x} = x \quad \text{for all positive } x

12
New cards

Exponential Modelling (General)

In exponential change, let A be the quantity at time t. The general formula is:

  • A = A_0 b^t

    where A₀ is the initial quantity and b is a positive constant.

    • If b > 1, the model represents growth, such as:

      • Growth of cells

      • Population growth

      • Continuously compounded interest

    • If b < 1, the model represents decay, such as:

      • Radioactive decay

      • Cooling of materials

13
New cards

Application and Variants of the Model

  • Cell Growth Formula:
    For bacterial growth, the formula N = N_0 2^{\frac{t}{T_D}}is used, where Tᴰ is the generation time.

  • Radioactive Decay Formula:
    The formula A = A_0 2^{-kt} describes radioactive decay, where k is the decay constant. Half - life may be used to model this A = A_0 \left(\frac{1}{2}\right)^n

  • Population Growth:

  • A = A_0 \left(1 + \frac{r}{100}\right)^t
    Where:

    • A = population

    • A₀ = initial population

    • r = rate of growth/decay

    • t = time taken

14
New cards

Limiting Values

In some exponential functions, a limiting value L is approached but never reached. Using the concept of limit, the formula for this behavior can be written as:
\lim_{x \to \infty} f(x) = L
where f(x) approaches L as x increases but never actually reaches it.

<p class="">In some exponential functions, a limiting value <strong>L</strong> is approached but never reached. Using the concept of limit, the formula for this behavior can be written as:<br>$$\lim_{x \to \infty} f(x) = L$$<br>where <strong>f(x)</strong> approaches <strong>L</strong> as <strong>x</strong> increases but never actually reaches it.</p>
15
New cards

CAS: Determining Rules

  1. Define f(x) = a × bx.

  2. Solve the simultaneous equations (in example).

<ol><li><p>Define f(x) = a × bx.</p></li><li><p>Solve the simultaneous equations (in example).</p></li></ol><p></p>
16
New cards

CAS: Fitting Data (Example)

  • Enter the data into List1 and List2.

  • Set the graph type to Scatter and assign List1 and List2 to the graph.

  • Tap Set to display the scatter plot.

  • Select Calc > Regression > abExponential Reg and tap OK to confirm.

  • The exponential function w = 1.55(1.22)ᵐ models Somu’s weight.

  • Tap OK to view the graph of the regression curve.

<ul><li><p class="">Enter the data into <strong>List1</strong> and <strong>List2</strong>.</p></li><li><p class="">Set the graph type to <strong>Scatter</strong> and assign <strong>List1</strong> and <strong>List2</strong> to the graph.</p></li><li><p class="">Tap <strong>Set</strong> to display the scatter plot.</p></li><li><p class="">Select <strong>Calc &gt; Regression &gt; abExponential Reg</strong> and tap <strong>OK</strong> to confirm.</p></li><li><p class="">The exponential function <strong>w = 1.55(1.22)ᵐ</strong> models Somu’s weight.</p></li><li><p class="">Tap <strong>OK</strong> to view the graph of the regression curve.</p></li></ul><p></p>
17
New cards

Where are the asymptotes for transformed functions y = a(x-h) + k and y = logₐ(x − h) + k?

  • Exponential y = a(x-h) + k → Horizontal asymptote y = k

  • Logarithmic y = logₐ(x − h) + k → Vertical asymptote x = h