Chapter 13 - Exponential Functions and Logarithms

0.0(0)
studied byStudied by 0 people
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/13

flashcard set

Earn XP

Description and Tags

Logarithm master in a nutshell!

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

14 Terms

1
New cards

What is a power, base, and exponent?
List the index laws and key rules for powers.

  • A power is written as aⁿ, where:

    • a is the base (non-zero)

    • n is the exponent or index

Index Laws (for a, b ≠ 0 and integers m, n):

  1. aᵐ × aⁿ = aᵐ⁺ⁿ

  2. aᵐ ÷ aⁿ = aᵐ⁻ⁿ

  3. (aᵐ)ⁿ = aᵐⁿ

  4. (ab)ⁿ = aⁿ × bⁿ

  5. (a/b)ⁿ = aⁿ ÷ bⁿ

Special rules:

  • a⁰ = 1 (for a ≠ 0)

  • a⁻ⁿ = 1/aⁿ, and 1/a⁻ⁿ = aⁿ

  • 0ⁿ = 0 for n > 0, but 0⁰ is undefined

2
New cards

What does a^(1/n) mean?
How do index laws extend to rational indices?

  • For a > 0 and n ∈ ℕ:
    a^(1/n) = the n-th root of a → a^(1/n) = ⁿ√a
    So: (a^(1/n))ⁿ = a

  • Special cases:

    • 0^(1/n) = 0

    • If n is odd and a < 0, a^(1/n) is defined (result is negative)

Extended Index Laws:

  1. a^(m/q) × a^(n/p) = a^(m/q + n/p)

  2. a^(m/q) ÷ a^(n/p) = a^(m/q − n/p)

  3. (a^(m/q))^(n/p) = a^[(m/q) × (n/p)]

3
New cards

Exponential Functions & Transformations

  • For y = aˣ where a > 1, the graph has:

    • The x-axis as an asymptote.

    • A y-intercept at (0, 1).

    • Positive y-values with no x-axis intercept.

    • All graphs of this form are dilations of each other from the y-axis.

  • For y = aˣ where 0 < a < 1, the graph decays similarly but reflects the opposite behavior.

  • If f(x) = aˣ and g(x) = a⁻ˣ, then g(x) is the reflection of f(x) in the y-axis.

<ul><li><p class="">For <strong>y = aˣ</strong> where <strong>a &gt; 1</strong>, the graph has:</p><ul><li><p class="">The x-axis as an asymptote.</p></li><li><p class="">A y-intercept at (0, 1).</p></li><li><p class="">Positive y-values with no x-axis intercept.</p></li><li><p class="">All graphs of this form are dilations of each other from the y-axis.</p></li></ul></li><li><p class="">For <strong>y = aˣ</strong> where <strong>0 &lt; a &lt; 1</strong>, the graph decays similarly but reflects the opposite behavior.</p></li><li><p class="">If <strong>f(x) = aˣ</strong> and <strong>g(x) = a⁻ˣ</strong>, then <strong>g(x)</strong> is the reflection of <strong>f(x)</strong> in the y-axis.</p></li></ul><p></p>
4
New cards

CAS: Sketching Logarithm Graphs

knowt flashcard image
5
New cards

Solving Exponential Inequalities

To solve an exponential equation without a calculator, express both sides with the same base and equate the exponents (since aˣ = aʸ implies x = y for any base a > 0, a ≠ 1).

Example: 2ˣ+1 = 82ˣ+1 = 2³x + 1 = 3x = 2.

To solve an exponential inequality, follow the same method as an equation and apply the appropriate property:

If aˣ > aʸ, then:

  • x > y when a > 1

  • x < y when 0 < a < 1.

Example: 2ˣ+1 > 82ˣ+1 > 2³x + 1 > 3x > 2.

6
New cards

Laws of Logarithms

  • For a ∈ R⁺ \ {1}, the logarithm function base a is defined as follows:
    aˣ = y is equivalent to logay = x.

  • The expression logay is defined for all positive real numbers y.

  • To evaluate logay, ask the question: "What power of a gives y?"

Laws of Logarithms:

  1. loga(mn) = logam + logan

  2. loga(m/n) = logam - logan

  3. loga(mᵖ) = p logam

  4. loga(m⁻¹) = − logam

  5. log₁/ₐ(x) = −logₐ(x)

Examples:

  • log₅ 1 = 0 and logaa = 1

<ul><li><p class="">For <strong>a ∈ R⁺ \ {1}</strong>, the logarithm function base <strong>a</strong> is defined as follows:<br><strong>aˣ = y</strong> is equivalent to <strong>log<sub>a</sub>y = x</strong>.</p></li><li><p class="">The expression <strong>log<sub>a</sub>y</strong> is defined for all <strong>positive real numbers y</strong>.</p></li><li><p class="">To evaluate <strong>log<sub>a</sub>y</strong>, ask the question: "What power of <strong>a</strong> gives <strong>y</strong>?"</p></li></ul><p class=""><strong>Laws of Logarithms:</strong></p><ol><li><p class=""><strong>log<sub>a</sub>(mn) = log<sub>a</sub>m + log<sub>a</sub>n</strong></p></li><li><p class=""><strong>log<sub>a</sub>(m/n) = log<sub>a</sub>m - log<sub>a</sub>n</strong></p></li><li><p class=""><strong>log<sub>a</sub>(mᵖ) = p log<sub>a</sub>m</strong></p></li><li><p class=""><strong>log<sub>a</sub>(m⁻¹) = − log<sub>a</sub>m</strong></p></li><li><p class=""><strong>log₁/ₐ(x) = −logₐ(x)</strong></p></li></ol><p class=""><strong>Examples:</strong></p><ul><li><p class=""><strong>log₅ 1 = 0</strong> and <strong>log<sub>a</sub>a = 1</strong></p></li></ul><p></p>
7
New cards

Using logarithms to solve exponential equations and inequalities

Key Concepts:

  • Logarithmic Relationship:
    For a, b, c > 0, where a ≠ 1 and b ≠ 1, we have:
    loga c = (logbc) / (logba).

  • Logarithms and Exponentials:
    If a ∈ R⁺ \ {1} and x ∈ R, then:

    • ax = blogab = x.

    This property is useful for solving exponential equations and inequalities.

  • Examples:

    • 2ˣ = 5x = log₂ 5.

    • 2ˣ ≥ 5x ≥ log₂ 5.

    • (0.3)ˣ = 5x = log₀.₃ 5.

    • (0.3)ˣ ≥ 5x ≤ log₀.₃ 5.


Examples of Solving Exponential Equations:

  • Solve 2ˣ = 11:
    x = log₂ 11 ≈ 3.45943.

  • Alternative Method:
    Taking log₁₀ of both sides:

    • log₁₀(2ˣ) = log₁₀ 11

    • x log₁₀ 2 = log₁₀ 11

    • x = log₁₀ 11 / log₁₀ 2
      Thus, log₂ 11 = log₁₀ 11 / log₁₀ 2.

  • Solve 3²ˣ⁻¹ = 28:

    • 2ˣ - 1 = log₃ 28

    • 2ˣ = 1 + log₃ 28

    • x ≈ 2.017.

  • Solve the inequality 0.7ˣ ≥ 0.3:
    Taking log₁₀ of both sides:

    • x log₁₀ 0.7 ≥ log₁₀ 0.3

    • x ≤ log₁₀ 0.3 / log₁₀ 0.7

    • x ≈ 3.376 (direction of inequality reversed since log₁₀ 0.7 < 0).

    Alternatively, solve as:
    x ≤ log₀.₇ 0.3.


Exponential Graphs and Logarithms:

  • Graph of f(x) = 2 × 10ˣ − 4:

    • Horizontal asymptote at y = −4 as x → −∞.

    • The y-axis intercept is f(0) = −2.

    • The x-axis intercept occurs when f(x) = 0:

      • 2 × 10ˣ − 4 = 0x = log₁₀ 2 ≈ 0.3010.

8
New cards

📊 Properties of Exponential vs Logarithmic Functions

Property

y = aˣ (Exponential)

y = logₐx (Logarithmic)

Domain

ℝ⁺ (x > 0)

Range

ℝ⁺ (y > 0)

Key Point

a⁰ = 1

logₐ1 = 0

End Behavior

x → −∞, y → 0⁺

x → 0⁺, y → −∞

Asymptote

y = 0

x = 0

<table style="min-width: 75px"><colgroup><col style="min-width: 25px"><col style="min-width: 25px"><col style="min-width: 25px"></colgroup><tbody><tr><th colspan="1" rowspan="1"><p><strong>Property</strong></p></th><th colspan="1" rowspan="1"><p><strong>y = aˣ</strong> (Exponential)</p></th><th colspan="1" rowspan="1"><p><strong>y = logₐx</strong> (Logarithmic)</p></th></tr><tr><td colspan="1" rowspan="1"><p>Domain</p></td><td colspan="1" rowspan="1"><p>ℝ</p></td><td colspan="1" rowspan="1"><p>ℝ⁺ (x &gt; 0)</p></td></tr><tr><td colspan="1" rowspan="1"><p>Range</p></td><td colspan="1" rowspan="1"><p>ℝ⁺ (y &gt; 0)</p></td><td colspan="1" rowspan="1"><p>ℝ</p></td></tr><tr><td colspan="1" rowspan="1"><p>Key Point</p></td><td colspan="1" rowspan="1"><p>a⁰ = 1</p></td><td colspan="1" rowspan="1"><p>logₐ1 = 0</p></td></tr><tr><td colspan="1" rowspan="1"><p>End Behavior</p></td><td colspan="1" rowspan="1"><p>x → −∞, y → 0⁺</p></td><td colspan="1" rowspan="1"><p>x → 0⁺, y → −∞</p></td></tr><tr><td colspan="1" rowspan="1"><p>Asymptote</p></td><td colspan="1" rowspan="1"><p>y = 0</p></td><td colspan="1" rowspan="1"><p>x = 0</p></td></tr></tbody></table><p></p>
9
New cards

🔄 Transformations Summary (General Form)

Type

Example

Effect

Shift Right

y = logₐ(x − h)

→ right h units

Shift Left

y = logₐ(x + h)

→ left h units

Shift Up

y = logₐ(x) + k

↑ up k units

Shift Down

y = logₐ(x) − k

↓ down k units

Stretch (vertical)

y = a·logₐ(x), a > 1

↑ vertical stretch by factor a

Compress (vertical)

y = a·logₐ(x), 0 < a < 1

↓ vertical compression by factor a

Horizontal Compress

y = logₐ(bx), b > 1

→ compress across y-axis (divide x by b)

Horizontal Stretch

y = logₐ(bx), 0 < b < 1

→ stretch across y-axis (multiply x by 1/b)

Reflect in x-axis

y = −logₐ(x)

reflect in x-axis

Reflect in y-axis

y = logₐ(−x)

reflect in y-axis

🔁 Inverse Functions:

y = a^x y = logₐx
Reflect across the line y = x

If a > 0 and a ≠ 1, then:

  • logₐ(aˣ) = x for all real x

  • a^(logₐx) = x for all positive x

10
New cards

Exponential Modelling (General)

In exponential change, let A be the quantity at time t. The general formula is:

  • A = A₀ bᵗ,

    where A₀ is the initial quantity and b is a positive constant.

    • If b > 1, the model represents growth, such as:

      • Growth of cells

      • Population growth

      • Continuously compounded interest

    • If b < 1, the model represents decay, such as:

      • Radioactive decay

      • Cooling of materials

11
New cards

Application and Variants of the Model

  • Cell Growth Formula:
    For bacterial growth, the formula N = N₀2(t/TD) is used, where Tᴰ is the generation time.

  • Radioactive Decay Formula:
    The formula A = A₀ 2⁻ᵏᵗ describes radioactive decay, where k is the decay constant. Half - life may be used to model this (A = A0(1/2)n)

  • Population Growth:

  • It is sometimes possible to model population growth through exponential models, depending on the case.

12
New cards

Limiting Values

In some exponential functions, a limiting value L is approached but never reached. Using the concept of limit, the formula for this behavior can be written as:
lim (x → ∞) f(x) = L,
where f(x) approaches L as x increases but never actually reaches it.

<p class="">In some exponential functions, a limiting value <strong>L</strong> is approached but never reached. Using the concept of limit, the formula for this behavior can be written as:<br><strong>lim (x → ∞) f(x) = L</strong>,<br>where <strong>f(x)</strong> approaches <strong>L</strong> as <strong>x</strong> increases but never actually reaches it.</p>
13
New cards

CAS: Determining Rules

  1. Define f(x) = a × bx.

  2. Solve the simultaneous equations (in example).

<ol><li><p>Define f(x) = a × bx.</p></li><li><p>Solve the simultaneous equations (in example).</p></li></ol><p></p>
14
New cards

CAS: Fitting Data (Example)

  • Enter the data into List1 and List2.

  • Set the graph type to Scatter and assign List1 and List2 to the graph.

  • Tap Set to display the scatter plot.

  • Select Calc > Regression > abExponential Reg and tap OK to confirm.

  • The exponential function w = 1.55(1.22)ᵐ models Somu’s weight.

  • Tap OK to view the graph of the regression curve.

<ul><li><p class="">Enter the data into <strong>List1</strong> and <strong>List2</strong>.</p></li><li><p class="">Set the graph type to <strong>Scatter</strong> and assign <strong>List1</strong> and <strong>List2</strong> to the graph.</p></li><li><p class="">Tap <strong>Set</strong> to display the scatter plot.</p></li><li><p class="">Select <strong>Calc &gt; Regression &gt; abExponential Reg</strong> and tap <strong>OK</strong> to confirm.</p></li><li><p class="">The exponential function <strong>w = 1.55(1.22)ᵐ</strong> models Somu’s weight.</p></li><li><p class="">Tap <strong>OK</strong> to view the graph of the regression curve.</p></li></ul><p></p>