Basic Differentiation Rules for Elementary Functions
3.1 Chain Rule
d/dx sin u(x)
cos u(x) du/dx
d/dx cos u(x)
-sin u(x) du/dx
d/dx tan u(x)
sec^2 u(x) du/dx
d/dx sec u(x)
sec u(x) tan u(x) du/dx
d/dx csc u(x)
-csc u(x) cot u(x) du/dx
d/dx cot u(x)
-csc^2 u(x) du/dx
General Power Rule
d/dx [u^n]
n[u(x)]^n-1 du/dx
Exponential Function to Base a
a^x
e^(ln a * x)
Derivative of y=a^x
d/dx [a^x]
(ln a) a^x
d/dx [a^u]
(ln a) a^u du/dx
Implicit Form
It is inconvenient or impossible to write explicit. Ex: xy=1
Explicit Form
y is explicitly written as a function of x, y=f(x)
Example: y=1/x=x^-1
3.3 Derivatives of an Inverse Trigonometric Function
d/dx [arc sin u] OR sin^-1 (u)
d/dx [arc tan u]
d/dx [arc cos u]
d/dx [arc cot u]
d/dx [arc sec u]
d/dx [arc csc u]
3.4 Derivative of a Logarithmic Function
d/dx [log a x]
1 / (ln a) x
d/dx [log a u]
1 / (ln a) u du/dx = u’ / u*ln a
d/dx [ln x]
1/x
d/dx [ln u]
u’/u
Theorem: The Number e as a Limit
d/dx [u + v]
du/dx + dv/dx
d/dx [fg]
f’g + fg’
d/dx [f/g]
(f’g - fg’) / g²
d/dx [e^u]
c^u * u’
d/dx [1/g(x)]
g’(x) / (g(x))²
d/dx [ |u| ]
u / |u| * u’