Chemistry - Ketone and Aldehydes

0.0(0)
studied byStudied by 0 people
0.0(0)
full-widthCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/16

flashcard set

Earn XP

Description and Tags

idk what the hell is happening im deadass cooked.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

17 Terms

1
New cards

Jones Oxidation (Na₂Cr₂O₇)

  • Strong oxidation of aldehydes → carboxylic acids.

  • Strong oxidation of 1° alcohols → carboxylic acids.

  • 2° alcohols → ketones.

  • Cannot stop at aldehyde; pushes fully to acid.

  • Acetone is solvent.

2
New cards

NaBH₄ Reduction (NaBH₄, EtOH)

  • Reduces aldehydes & ketones → alcohols.

  • Does not reduce esters, amides, or carboxylic acids.

  • Safe with protic solvents (EtOH, MeOH).

  • Selective for carbonyls in complex molecules.

3
New cards

KMnO4 Oxidation (KMnO₄, heat)

  • Strong oxidation: aldehydes/1° alcohols → acids.

  • 2° alcohols → ketones.

  • Cleaves alkenes → carbonyls or acids.

  • Very aggressive, over-oxidation common.

<ul><li><p>Strong oxidation: aldehydes/1° alcohols → <strong>acids</strong>.</p></li><li><p>2° alcohols → <strong>ketones</strong>.</p></li><li><p>Cleaves alkenes → carbonyls or acids.</p></li><li><p>Very aggressive, over-oxidation common.</p></li></ul><p></p>
4
New cards

PCC Oxidation (PCC with solvent CH₂Cl₂)

  • 1° alcohols → aldehydes (no over-oxidation).

  • 2° alcohols → ketones.

  • Works under anhydrous conditions.

  • Milder than Jones/KMnO₄.

<ul><li><p>1° alcohols → <strong>aldehydes</strong> (no over-oxidation).</p></li><li><p>2° alcohols → <strong>ketones</strong>.</p></li><li><p>Works under anhydrous conditions.</p></li><li><p>Milder than Jones/KMnO₄.</p></li></ul><p></p>
5
New cards

Swern Oxidation (DMSO, (COCl)₂, Et₃N)

  • 1° alcohols → aldehydes.

  • 2° alcohols → ketones.

  • No heavy metals.

  • Cold (–78°C) required.

<ul><li><p>1° alcohols → <strong>aldehydes</strong>.</p></li><li><p>2° alcohols → <strong>ketones</strong>.</p></li><li><p>No heavy metals.</p></li><li><p>Cold (–78°C) required.</p></li></ul><p></p>
6
New cards

Ozonolysis (O₃ → Zn/HCl or DMS)

  • Cleaves alkenes → two carbonyls.

  • Reductive workup → aldehydes/ketones.

  • Oxidative workup → acids/ketones.

  • Exact cleavage of double bond.

<ul><li><p>Cleaves alkenes → <strong>two carbonyls</strong>.</p></li><li><p>Reductive workup → aldehydes/ketones.</p></li><li><p>Oxidative workup → acids/ketones.</p></li><li><p>Exact cleavage of double bond.</p></li></ul><p></p>
7
New cards

LiAlH₄ Reduction (1. LiAlH₄ 2. H₃O⁺)

  • Reduces aldehydes → 1° alcohols.

  • Reduces ketones → 2° alcohols.

  • Reduces esters/acids/amides → alcohols/amines.

  • Must be quenched carefully with water after reaction.

<ul><li><p>Reduces <strong>aldehydes → 1° alcohols</strong>.</p></li><li><p>Reduces <strong>ketones → 2° alcohols</strong>.</p></li><li><p>Reduces <strong>esters/acids/amides → alcohols/amines</strong>.</p></li><li><p>Must be quenched carefully with water after reaction.</p></li></ul><p></p>
8
New cards

Grignard (1. R–MgBr 2. H₃O⁺)

  • Nucleophilic R⁻ attack on carbonyl carbon.

  • Aldehydes → 2° alcohols (add one R).

  • Ketones → 3° alcohols (add one R).

  • Adds C–C bonds (key carbon chain-building reaction).

9
New cards

Tollens Oxidation (Ag₂O, OH⁻ → H₃O⁺)

  • Selective aldehyde oxidation → carboxylate → acid.

  • Leaves alcohols/ketones unchanged.

  • Produces silver mirror.

  • Mild & chemoselective.

10
New cards

Wittig Reaction (Ph₃P=CH₂)

  • Converts carbonyl C=O → C=C.

  • Aldehydes → terminal alkenes with =CH₂.

  • Replaces oxygen entirely.

  • Good for stereoselective alkene formation; opposite of ozonolysis.

11
New cards

Weak Hydride Reduction (LTBA) (Li(t-BuO)₃, cold)

  • Selective reduction of acid chlorides → aldehydes.

  • Stops before alcohol stage.

  • Requires cold conditions (–78°C).

  • More selective than LiAlH₄.

<ul><li><p>Selective reduction of <strong>acid chlorides → aldehydes</strong>.</p></li><li><p>Stops before alcohol stage.</p></li><li><p>Requires cold conditions (–78°C).</p></li><li><p>More selective than LiAlH₄.</p></li></ul><p></p>
12
New cards

DIBAL-H Reduction (DIBAL-H → H₃O⁺)

  • Esters → aldehydes (controlled low temp).

  • Excess/warm → alcohols.

  • Nitriles → aldehydes (via imine).

  • Temperature-sensitive.

<ul><li><p>Esters → <strong>aldehydes</strong> (controlled low temp).</p></li><li><p>Excess/warm → alcohols.</p></li><li><p>Nitriles → aldehydes (via imine).</p></li><li><p>Temperature-sensitive.</p></li></ul><p></p>
13
New cards

Friedel–Crafts Acylation (RCOCl, AlCl₃)

  • Benzene → aryl ketone.

  • No rearrangements.

  • Product deactivates the ring.

  • Clean one-substitution reaction.

<ul><li><p>Benzene → <strong>aryl ketone</strong>.</p></li><li><p>No rearrangements.</p></li><li><p>Product deactivates the ring.</p></li><li><p>Clean one-substitution reaction.</p></li></ul><p></p>
14
New cards

Alkyne Hydration (HgSO₄, H₂SO₄, H₂O)

  • Terminal alkyne → methyl ketone (Markovnikov).

  • Proceeds via enol → keto.

  • Needs Hg²⁺ catalyst.

  • Internal alkynes → ketones.

<ul><li><p>Terminal alkyne → <strong>methyl ketone</strong> (Markovnikov).</p></li><li><p>Proceeds via enol → keto.</p></li><li><p>Needs Hg²⁺ catalyst.</p></li><li><p>Internal alkynes → ketones.</p></li></ul><p></p>
15
New cards

General Acetal Formation (2 ROH, H⁺)

  • Carbonyl → acetal (protected form).

  • Hemiacetal intermediate.

  • Stable in base.

  • Deprotected with aqueous acid.

<ul><li><p>Carbonyl → <strong>acetal</strong> (protected form).</p></li><li><p>Hemiacetal intermediate.</p></li><li><p>Stable in base.</p></li><li><p>Deprotected with aqueous acid.</p></li></ul><p></p>
16
New cards

Cyclic Acetal Formation (with diol) (HOCH₂CH₂OH, cat. H⁺)

  • Carbonyl + diol → 5-membered cyclic acetal.

  • Excellent protecting group.

  • Stable in base, removable in acid.

  • Driven by intramolecular ring closure.

17
New cards

Hydrazone Formation (PhNHNH₂, pH 4–5)

  • Carbonyl → C=N–NHPh (hydrazone).

  • Dehydration product from hydrazine/hydrazide reacting with an aldehyde or ketone.

  • Formed via condensation (loss of H₂O).

  • Product = hydrazone: Carbonyl oxygen replaced by =N–NHPh (or =N–NH₂ for hydrazine).