1/33
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
derivative of an inverse function
(f⁻¹)’(x) = 1/f’(f⁻¹(x))
derivative of ex
ex
derivative of eu
eu * du/dx
∫exdx
ex + C
∫eudx
eu + C
d/dx[ax]
(ln a)(ax)
d/dx[au]
(ln a)(au)du/dx
d/dx[logax]
1/(ln a * x)
d/dx[logau]
1/(ln a * u) * du/dx
∫ax dx
(1/ln a)ax + C
d/dx[ln x]
1/x
d/dx[ln u]
1/u * du/dx, = u’/u
d/dx[ln |u|]
u’/u
∫1/x * dx
ln |x| + c
∫1/u * du
ln|u| + c
∫u’/u * dx
ln|u| + C
d/dx[arcsin u]
u’/(√1-u²)
d/dx[arccos u]
-u’/(√1-u²)
d/dx[arctan u]
u’/(1 + u²)
d/dx[arccot u]
-u’/(1 + u²)
d/dx[arcsec u]
u’/(|u| * (√u² - 1))
d/dx[arccsc u]
-u’/(|u| * (√u² - 1))
∫du/(√a²-u²)
arcsin u/a + c
-∫du/(√a²-u²)
arccos u/a + c
∫du/(a² + u²)
(1/a arctan u/a) + c
-∫du/(a² + u²)
(1/a arccot u/a) + c
∫du/(u*√u²-a²)
(1/a arcsec |u|/a) + c
-∫du/(u*√u²-a²)
(1/a arccsc |u|/a) + c