Home
Explore
Exams
Search for anything
Login
Get started
Home
Math
Calculus
Integration
AP Calc-integrals
5.0
(1)
Rate it
Learn
Practice Test
Spaced Repetition
Match
Flashcards
Card Sorting
1/41
Earn XP
Description and Tags
Calculus
Integration
11th
Add tags
Study Analytics
All
Learn
Practice Test
Matching
Spaced Repetition
Name
Mastery
Learn
Test
Matching
Spaced
No study sessions yet.
42 Terms
View all (42)
Star these 42
1
New cards
∫du
u + C
2
New cards
∫edu
e^u + C
3
New cards
∫cos(u)du
sin(u) + C
4
New cards
∫cot(u)du
lnIsin(u)I + C
5
New cards
∫csc(u)du
-lnIcsc(u) + cot(u)I + C
6
New cards
∫csc²(u)du
-cot(u) + C
7
New cards
∫csc(u)cot(u)du
-csc(u) + C
8
New cards
∫du/(a²+u²)
(1/a)arctan(u/a) + C
9
New cards
∫[f(u) + g(u)]du
∫f(u)du + ∫g(u)du
10
New cards
∫[f(u) - g(u)]du
∫f(u)du - ∫g(u)du
11
New cards
∫(a^u)du
(1/ln(a))a^u +C
12
New cards
∫sin(u)du
-cos(u) + C
13
New cards
∫tan(u)du
-lnIcos(u)I + C
14
New cards
∫sec(u)du
lnIsec(u) + tan(u)I + C
15
New cards
∫sec²(u)du
tan(u) + C
16
New cards
∫sec(u)tan(u)du
sec(u) + C
17
New cards
∫du/√(a²-u²)
arcsin(u/a) +C
18
New cards
∫du/[(u)√(u²−a²)
(1/a)arcsec(IuI/a) + C
19
New cards
net change formula
∫f'(x)=f(b) - f(a)
20
New cards
when do you use net change formula?
when the question asks for a rate of change
21
New cards
∆x=?
(b-a)/n
22
New cards
xi=
a + i∆x
23
New cards
area under the curve=
∆x(∑heights)
24
New cards
trapezoidal rule
(b-a)/(2n)[f(a) + 2f(n-1) + f(b)]
25
New cards
how do you do a midpoint sum
you take the ∆x of the points and multiply it by the middle number
26
New cards
∑c=
cn
27
New cards
∑
n(n+2)/2
28
New cards
∑i²=
n(n+1)(2n+1)/6
29
New cards
∑i³=
n²(n+1)²/4
30
New cards
∑(ai + bi)=
∑ai + ∑bi
31
New cards
∫f(x)dx=
limn→∞∑f(xi)∆x
32
New cards
(d/dx)g(x)=∫(from x to 0)√1+t² dt(d/dx)=
g'(x)=√1+x² (1) - √1+0² (0)
33
New cards
∫x^n=
(x^n+1)/(n+1)
34
New cards
∫(from a to a)f(x)dx=
0
35
New cards
∫(from b to a)f(x)dx=
-∫(from a to b)f(x)dx
36
New cards
f(avg)=
1/(b-a)∫(from a to b)f(x)dx
37
New cards
steps for u-sub
1. choose u
2. find du
3. rewrite integral in terms of u
4. evaluate integral
5. replace u with function
38
New cards
if f is even, f(-x)=f(x), then ∫(from -a to a)f(x)dx=
2∫(from 0 to a)f(x)dx
39
New cards
if f is odd, f(-x)=-f(x), then ∫(from -a to a)f(x)dx=
0
40
New cards
when n/d, n is 2 less, use...
inverse trig
41
New cards
when n/d, n=d, use...
u-sub
42
New cards
when n/d, n≥d, use...
long division