AP Calc-integrals

studied byStudied by 39 people
5.0(1)
learn
LearnA personalized and smart learning plan
exam
Practice TestTake a test on your terms and definitions
spaced repetition
Spaced RepetitionScientifically backed study method
heart puzzle
Matching GameHow quick can you match all your cards?
flashcards
FlashcardsStudy terms and definitions

1 / 41

flashcard set

Earn XP

Description and Tags

42 Terms

1

∫du

u + C

New cards
2

∫edu

e^u + C

New cards
3

∫cos(u)du

sin(u) + C

New cards
4

∫cot(u)du

lnIsin(u)I + C

New cards
5

∫csc(u)du

-lnIcsc(u) + cot(u)I + C

New cards
6

∫csc²(u)du

-cot(u) + C

New cards
7

∫csc(u)cot(u)du

-csc(u) + C

New cards
8

∫du/(a²+u²)

(1/a)arctan(u/a) + C

New cards
9

∫[f(u) + g(u)]du

∫f(u)du + ∫g(u)du

New cards
10

∫[f(u) - g(u)]du

∫f(u)du - ∫g(u)du

New cards
11

∫(a^u)du

(1/ln(a))a^u +C

New cards
12

∫sin(u)du

-cos(u) + C

New cards
13

∫tan(u)du

-lnIcos(u)I + C

New cards
14

∫sec(u)du

lnIsec(u) + tan(u)I + C

New cards
15

∫sec²(u)du

tan(u) + C

New cards
16

∫sec(u)tan(u)du

sec(u) + C

New cards
17

∫du/√(a²-u²)

arcsin(u/a) +C

New cards
18

∫du/[(u)√(u²−a²)

(1/a)arcsec(IuI/a) + C

New cards
19

net change formula

∫f'(x)=f(b) - f(a)

New cards
20

when do you use net change formula?

when the question asks for a rate of change

New cards
21

∆x=?

(b-a)/n

New cards
22

xi=

a + i∆x

New cards
23

area under the curve=

∆x(∑heights)

New cards
24

trapezoidal rule

(b-a)/(2n)[f(a) + 2f(n-1) + f(b)]

New cards
25

how do you do a midpoint sum

you take the ∆x of the points and multiply it by the middle number

New cards
26

∑c=

cn

New cards
27

n(n+2)/2

New cards
28

∑i²=

n(n+1)(2n+1)/6

New cards
29

∑i³=

n²(n+1)²/4

New cards
30

∑(ai + bi)=

∑ai + ∑bi

New cards
31

∫f(x)dx=

limn→∞∑f(xi)∆x

New cards
32

(d/dx)g(x)=∫(from x to 0)√1+t² dt(d/dx)=

g'(x)=√1+x² (1) - √1+0² (0)

New cards
33

∫x^n=

(x^n+1)/(n+1)

New cards
34

∫(from a to a)f(x)dx=

0

New cards
35

∫(from b to a)f(x)dx=

-∫(from a to b)f(x)dx

New cards
36

f(avg)=

1/(b-a)∫(from a to b)f(x)dx

New cards
37

steps for u-sub

  1. choose u

  2. find du

  3. rewrite integral in terms of u

  4. evaluate integral

  5. replace u with function

New cards
38

if f is even, f(-x)=f(x), then ∫(from -a to a)f(x)dx=

2∫(from 0 to a)f(x)dx

New cards
39

if f is odd, f(-x)=-f(x), then ∫(from -a to a)f(x)dx=

0

New cards
40

when n/d, n is 2 less, use...

inverse trig

New cards
41

when n/d, n=d, use...

u-sub

New cards
42

when n/d, n≥d, use...

long division

New cards
robot