1/34
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
|---|
No study sessions yet.
Focus of an x² parabola
(h, k + c)
Focus of a y² parabola
(h + c, k)
Directrix of an x² parabola
y = k - c
Directrix of a y² parabola
x = h - c
Latus Rectum of a parabola
4c
Equation of an x² parabola
(x - h)² = 4c(y - k)
Equation of a y² parabola
(y - k)² = 4c(x - h)
An x² parabola opens…
Up/down
A y² parabola opens…
Left/right
Equation of a horizontal ellipse
(x - h)² / a² + (y - k)² / b² = 1
Equation of a vertical ellipse
(x - h)² / b² + (y - k)² / a² = 1
Foci of a horizontal ellipse
(h ± c, k)
Foci of a vertical ellipse
(h, k ± c)
Directrices of a horizontal ellipse
x = h ± a²/c
Directrices of a vertical ellipse
y = k ± a²/c
Vertices of a horizontal ellipse
(h ± a, k)
Vertices of a vertical ellipse
(h, k ± a)
Covertices of a horizontal ellipse
(h, k ± b)
Covertices of a vertical ellipse
(h ± b, k)
Latus Rectum of ANY ellipse
(2b²)/a
Eccentricity of ANY ellipse
c/a
A, b, c relation of ANY ellipse
a² = b² + c²
Equation of a left/right hyperbola
(x-h)²/a² - (y-k)²/b² = 1
Equation of an up/down hyperbola
(y-k)²/a² - (x-h)²/b² = 1
Foci of a left/right hyperbola
(h ± c, k)
Foci of an up/down hyperbola
(h, k ± c)
Directrices of a left/right hyperbola
x = h ± a²/c
Directrices of an up/down hyperbola
y = k ± a²/c
Vertices of a left/right hyperbola
(h ± a, k)
Vertices of an up/down hyperbola
(h, k ± a)
Asymptotes of a left/right hyperbola
y - k = ± b/a(x - h)
Asymptotes of an up/down hyperbola
y - k = ± a/b(x - h)
Latus Rectum of ANY hyperbola
(2b²)/a
Eccentricity of ANY hyperbola
c/a
A, b, c relation for ANY hyperbola
c² = a² + b²