PP 8: Zooplankton community dynamics

0.0(0)
studied byStudied by 0 people
0.0(0)
full-widthCall with Kai
GameKnowt Play
New
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/29

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

30 Terms

1
New cards

seasonal succession graph

  • Generalization  

  • Copepods, have a higher percentage of predatory species 

  • Predators: 15% of the population  

  • This is why copepods have that steady presence, and also because they live longer than the other species  

  • Rotifers and cladocerans have those peaks, have low winter density 

  • Rotifers peak in the spring, cladocerans peak in the fall 

  • Respond to the seasonality of phytoplankton  

<ul><li><p class="Paragraph SCXW212456303 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">Generalization&nbsp;&nbsp;</span></p></li></ul><ul><li><p class="Paragraph SCXW212456303 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">Copepods, have a higher percentage of predatory species&nbsp;</span></p></li></ul><ul><li><p class="Paragraph SCXW212456303 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">Predators: 15% of the population&nbsp;&nbsp;</span></p></li></ul><ul><li><p class="Paragraph SCXW212456303 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">This is why copepods have that steady presence, and also because they live longer than the other species&nbsp;&nbsp;</span></p></li></ul><ul><li><p class="Paragraph SCXW212456303 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">Rotifers and cladocerans have those peaks, have low winter density&nbsp;</span></p></li></ul><ul><li><p class="Paragraph SCXW212456303 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">Rotifers peak in the spring, cladocerans peak in the fall&nbsp;</span></p></li></ul><ul><li><p class="Paragraph SCXW212456303 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">Respond to the seasonality of phytoplankton&nbsp;&nbsp;</span></p></li></ul><p></p>
2
New cards

Community ecology: seasonal succession

pic

<p>pic</p>
3
New cards

Community ecology: resource partitioning

-Habitat partitioning in Polyarthra species, Lake Skarshult  

  • Closely related species may populate different areas of a lake  

  • They need to separate themselves so they can get ahold of the nutrients they need 

<p class="Paragraph SCXW111729938 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">-Habitat partitioning in <em>Polyarthra</em> species, Lake Skarshult&nbsp;&nbsp;</span></p><ul><li><p class="Paragraph SCXW111729938 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">Closely related species may populate different areas of a lake&nbsp;&nbsp;</span></p></li></ul><ul><li><p class="Paragraph SCXW111729938 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">They need to separate themselves so they can get ahold of the nutrients they need&nbsp;</span></p></li></ul><p></p>
4
New cards

Feeding and assimilation rates: filter feeding rate

-1. terms of expression 

  • Feeding rate  

    • Count the number of algae cells per time, etc. How many cells of algae is it eating per hour 

  • Filtering rate  

    • Instead of counting cells, you’re taking a volume of water and then letting them filter the water  

    • number of liters of water filtered per animal per day  

-2. Methods of measurement  

  • Direct counting method 

    • Count algal cells at beginning (t0) and end (tn) of feeding period; calculate # cells removed per L per h  

  • Radioisotope method  

    • Label algae (or other food, e.g. yeast) with 32P or 14C  

    • Incubate known algal quantity with zooplankton in chamber 

    • Collect and radioassay zooplankton (can separate by species) 

5
New cards

Feeding and assimilation rates: assimilation rate (non-assimilated food in defecation)

-Respiration 

  • Measured with O2 probe 

-Defecation  

  • Collect defecation and combust it and get a calorie count 

-Radioisotope method 

  • Label food, feed it to them, once the gut clears whats left inside the body is the radioisotope signature  

6
New cards

population dynamics for a given species

-Population growth rate: r 

  • b= birth rate 

  • d= death rate 

  • e= emigration rate  

  • i= immigration rate 

-r=b-d-e+i 

7
New cards

population dynamics: controlling factors

  • Birth rate 

    • Zooplankton are temp dependent. With a high temp, molting will speed up, this speeds up birth rates.  

    • Increased food supply = increased number of offspring, increased brood size 

  • death rate 

    • Predation can be major, the big driving factor of population of zooplankton  

    • Longevity is greater at lower temps 

    • Growth rate slows down, but more likely to live longer 

  •  Emigration  

    • Depends on your system  

    • Common with outflow systems  

    • Depends on stream discharge lake relative to lake volume  

      • Ex. Dam being open or closed 

  • immigration  

    • Stream coming into a lake  

    • Invasive species, things hitch rides on boats  

    • Birds/mammals can transport things 

8
New cards

population dynamics: practical quantification

-Instantaneous growth rate: 

  • In most lakes, immigration and emigration are negligible  

  • If birth rate is relatively rapid, then over short periods death rate is negligible  

  • Therefore, birth rate alone is often used as an estimate of “instantaneous growth rate”: r=b 

9
New cards

birth rate is a function of:

-# of adults in the total population (population is one species, multiple species would be a community) 

-Average brood size (# of eggs per female) 

 

-Egg development time  

  • b=logn [1 + (#adults/pop size x average brood size/egg dev time)] 

  • The egg ratio method was pioneered by W.T. Edmonson  

  • Measured in a lab, extrapolated into the field 

-graph note: if there’s no predators theres usually an exponential growth curve

<p class="Paragraph SCXW174507106 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">-# of adults in the total population (population is one species, multiple species would be a community)&nbsp;</span></p><p class="Paragraph SCXW174507106 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">-Average brood size (# of eggs per female)&nbsp;</span></p><p class="Paragraph SCXW174507106 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">&nbsp;</span></p><p class="Paragraph SCXW174507106 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">-Egg development time&nbsp;&nbsp;</span></p><ul><li><p class="Paragraph SCXW174507106 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">b=log<sub>n</sub> [1 + (#adults/pop size x average brood size/egg dev time)]&nbsp;</span></p></li></ul><ul><li><p class="Paragraph SCXW174507106 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">The egg ratio method was pioneered by W.T. Edmonson&nbsp;&nbsp;</span></p></li></ul><ul><li><p class="Paragraph SCXW174507106 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">Measured in a lab, extrapolated into the field&nbsp;</span></p></li></ul><p>-graph note: if there’s no predators theres usually an exponential growth curve</p>
10
New cards

Don Hall’s surprise

  • Because these are such predatorial systems, death is in fact an important factor 

  • So things that had ignored death were not true  

  • Top one is a generalized pattern of population dynamics  

  • Bottom graph, something besides food is controlling the daphnia population because it deviates from the generalized pattern.  

<ul><li><p class="Paragraph SCXW255977052 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">Because these are such predatorial systems, death is in fact an important factor&nbsp;</span></p></li></ul><ul><li><p class="Paragraph SCXW255977052 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">So things that had ignored death were not true&nbsp;&nbsp;</span></p></li></ul><ul><li><p class="Paragraph SCXW255977052 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">Top one is a generalized pattern of population dynamics&nbsp;&nbsp;</span></p></li></ul><ul><li><p class="Paragraph SCXW255977052 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">Bottom graph, something besides food is controlling the daphnia population because it deviates from the generalized pattern.&nbsp;&nbsp;</span></p></li></ul><p></p>
11
New cards

Size selective predation on zooplankton

-Planktivorous fish are size selective 

  • Visual predators 

  • This impacts zooplankton species structure  

  • Fish can only eat things that fit in their gape size (mouth size) 

  • They're going to eat the biggest thing they possibly can 

  • With secondary effects on phytoplankton grazing results  

-Classic size selection experiments of Brooks and Dodson:  

  • When fish were introduced to previously fishless lakes, they strongly reduced all zooplankton species greater than 1mm in size 

  • Smaller zooplankton species become more dominant 

  • Community composition changed  

<p class="Paragraph SCXW221955869 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">-Planktivorous fish are size selective&nbsp;</span></p><ul><li><p class="Paragraph SCXW221955869 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">Visual predators&nbsp;</span></p></li></ul><ul><li><p class="Paragraph SCXW221955869 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">This impacts zooplankton species structure&nbsp;&nbsp;</span></p></li></ul><ul><li><p class="Paragraph SCXW221955869 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">Fish can only eat things that fit in their gape size (mouth size)&nbsp;</span></p></li></ul><ul><li><p class="Paragraph SCXW221955869 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">They're going to eat the biggest thing they possibly can&nbsp;</span></p></li></ul><ul><li><p class="Paragraph SCXW221955869 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">With secondary effects on phytoplankton grazing results&nbsp;&nbsp;</span></p></li></ul><p class="Paragraph SCXW221955869 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">-Classic size selection experiments of Brooks and Dodson:&nbsp;&nbsp;</span></p><ul><li><p class="Paragraph SCXW221955869 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">When fish were introduced to previously fishless lakes, they strongly reduced all zooplankton species greater than 1mm in size&nbsp;</span></p></li></ul><ul><li><p class="Paragraph SCXW221955869 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">Smaller zooplankton species become more dominant&nbsp;</span></p></li></ul><ul><li><p class="Paragraph SCXW221955869 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">Community composition changed&nbsp;&nbsp;</span></p></li></ul><p></p><p></p>
12
New cards
<p>size in the water column graph</p>

size in the water column graph

  • Zooplankton move up and down in the water column. In the day they move down, at night they move up  

  • The biggest ones come out at night. They hide in the day from the fish 

  • Small ones come out during the day 

13
New cards

Fish predation on zooplankton  

pic

<p>pic</p>
14
New cards

Alewife (herring): a size-selective predator  

What can pass past the gill rakers is what they’re eating  

<p><span style="line-height: 20.925px;">What can pass past the gill rakers is what they’re eating&nbsp;&nbsp;</span></p>
15
New cards

Trophic cascase

  • Idea of something at top driving whats below it, top down control 

  • Piscivorous fish= fish eating fish 

  • Planktivorous fish= fish eating plankton  

<ul><li><p class="Paragraph SCXW107382082 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">Idea of something at top driving whats below it, top down control&nbsp;</span></p></li></ul><ul><li><p class="Paragraph SCXW107382082 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">Piscivorous fish= fish eating fish&nbsp;</span></p></li></ul><ul><li><p class="Paragraph SCXW107382082 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">Planktivorous fish= fish eating plankton&nbsp;&nbsp;</span></p></li></ul><p></p>
16
New cards

Top down control

  • Some argue system is controlled by the nutrients, not by the predators 

  • It can be both 

<ul><li><p class="Paragraph SCXW208796881 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">Some argue system is controlled by the nutrients, not by the predators&nbsp;</span></p></li></ul><ul><li><p class="Paragraph SCXW208796881 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">It can be both&nbsp;</span></p></li></ul><p></p>
17
New cards

top down trophic cascade

pic

<p>pic</p>
18
New cards

evolutionary question

-Why should large species dominate a zooplankton community in absence of fish predation?  

-Advantages of relatively large body size in zooplankton:  

  • Greater range of food availability and feeding efficiency- with larger filtering apparatus, both small and large algae etc. are consumable  

  • Lower respiration rate  

    • Lower surface area to mass ratio 

  • Larger brood size  

    • If she can carry more babies, she might still have an edge even if predation is high for her because of her body size 

    • Probably the most important factor  

19
New cards

relative competition fitness vs predation avoidance fitness

pic

<p>pic</p>
20
New cards

vertical migration of zooplankton

  • Most zooplankton species exhibit cyclic vertical migration in the water column, generally associated with day/night cycles. The largest species migrate the most  

  • Largest species can also move faster and better in the water column 

  • Primarily the cladocerans and copepods in freshwater 

  • Distances: several meters per day  

  • Velocities: up to nearly 2 cm per sec (= approx. 1 meter per min). This is a very energy intense behavior, and therefore must have resulted from major evolutionary selection pressures  

21
New cards

vertical migration of zooplankton: migration patterns

-Nocturnal  

  • Up a night, down during the day 

  • Most common 

-Twilight  

  • Up a dawn and dusk, down during day at night 

-Diurnal  

  • Down at night, up during the day 

  • Most rare  

  • Smaller species, less predation prone  

22
New cards

vertical migration of zooplankton: controllers for nocturnal type

-Primarily a combination of  

  • Negative geotaxis  

    • Movement away from gravity 

  • Negative phototaxis 

    • Movement away from light 

-Phototaxis controllers  

  • Principally blue light (they are red blind) 

  • Rate of change in light -> initiation and velocity 

    • How quick the light changes will drive the speed 

  • Maximum intensity -> depth of migration (but will not descend into anaerobic hypolimnion)  

<p class="Paragraph SCXW113625253 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">-Primarily a combination of&nbsp;&nbsp;</span></p><ul><li><p><span style="line-height: 20.925px;">Negative geotaxis&nbsp;&nbsp;</span></p><ul><li><p><span style="line-height: 20.925px;">Movement away from gravity&nbsp;</span></p></li></ul></li><li><p><span style="line-height: 20.925px;">Negative phototaxis&nbsp;</span></p><ul><li><p><span style="line-height: 20.925px;">Movement away from light&nbsp;</span></p></li></ul></li></ul><p><span style="line-height: 20.925px;">-Phototaxis controllers&nbsp;&nbsp;</span></p><ul><li><p><span style="line-height: 20.925px;">Principally blue light (they are red blind)&nbsp;</span></p></li><li><p><span style="line-height: 20.925px;">Rate of change in light -&gt; initiation and velocity&nbsp;</span></p><ul><li><p><span style="line-height: 20.925px;">How quick the light changes will drive the speed&nbsp;</span></p></li></ul></li><li><p><span style="line-height: 20.925px;">Maximum intensity -&gt; depth of migration (but will not descend into anaerobic hypolimnion)&nbsp;&nbsp;</span></p></li></ul><p></p>
23
New cards

Hypotheses for evolutionary (and other) significance of vertical migration

-1. sampler avoidance: (in light) 

  • When you throw a net, they can swim away  

-2. predator avoidance  

  • Natural tendency for light avoidance in predator vulnerable species  

  • Probably the best theory  

-3. feeding efficiency- McLaren hypothesis  

  • Feeding is more efficient at high temp  

  • Growing is more efficient at low temp (low resp.) 

-4. food quality- Haney hypothesis  

  • Phytoplankton make more protein and divide faster at night -

24
New cards

Vertical migration of zooplankton Cont.  

-General practical implication of nocturnal migration: daytime sampling of zooplankton in the epilimnion (especially near surface) only will greatly underestimate population sizes. Also, there can be major horizontal patchiness in distribution:  

  • Zooplankton are concentrated by (and attracted to) Langmuir convergence zones  

    • Lots of zooplankton in the slick 

    • If you sample in the downwelling outside the slick, there will be less zooplankton 

  • There is avoidance of the littoral zone in some (predator avoidance?) 

<p class="Paragraph SCXW92262346 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">-General practical implication of nocturnal migration: daytime sampling of zooplankton in the epilimnion (especially near surface) only will greatly underestimate population sizes. Also, there can be major horizontal patchiness in distribution:&nbsp;&nbsp;</span></p><ul><li><p class="Paragraph SCXW92262346 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">Zooplankton are concentrated by (and attracted to) Langmuir convergence zones&nbsp;&nbsp;</span></p><ul><li><p><span style="line-height: 20.925px;">Lots of zooplankton in the slick&nbsp;</span></p></li><li><p><span style="line-height: 20.925px;">If you sample in the downwelling outside the slick, there will be less zooplankton&nbsp;</span></p></li></ul></li><li><p class="Paragraph SCXW92262346 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">There is avoidance of the littoral zone in some (predator avoidance?)&nbsp;</span></p></li></ul><p></p>
25
New cards

Vertical migration of zooplankton graph

See different patterns bc theres different species  

<p><span style="line-height: 20.925px;">See different patterns bc theres different species&nbsp;&nbsp;</span></p>
26
New cards

vertical migration graph

pic

<p>pic</p>
27
New cards

seasonal changes in vertical migration

-Algae is somewhat predictable, zooplankton are much more complex 

<p><span style="line-height: 20.925px;">-Algae is somewhat predictable, zooplankton are much more complex&nbsp;</span></p>
28
New cards

endogenous rhythm of migration behavior

  • Still moving up and down without “seeing” light a day 

  • Are genetically programmed to still move 

<ul><li><p class="Paragraph SCXW985611 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">Still moving up and down without “seeing” light a day&nbsp;</span></p></li></ul><ul><li><p class="Paragraph SCXW985611 BCX0" style="text-align: left;"><span style="line-height: 20.925px;">Are genetically programmed to still move&nbsp;</span></p></li></ul><p></p>
29
New cards

response to predator exudates

Theres a big change in behavior once you add fish juice. Shows there's a predatory response  

<p><span style="line-height: 20.925px;">Theres a big change in behavior once you add fish juice. Shows there's a predatory response&nbsp;&nbsp;</span></p>
30
New cards

impact of an invader on the zooplankton community

Predator introduced, zooplankton drops down

<p><span style="line-height: 20.925px;">Predator introduced, zooplankton drops down</span></p>