Algebra Formulas

0.0(0)
studied byStudied by 0 people
0.0(0)
full-widthCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/18

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

19 Terms

1
New cards

sin(x)

odd function: symmetry about the origin

def of odd: -sin(x) = sin(-x)

y/r

  • r = asin(b0-x) + y

  • a: amplitude

  • b: period (2π/b)

  • y: shift up or down

  • x: shift left or right

Frequency: how many cycles occur in 2π

<p>odd function: symmetry about the origin</p><p>def of odd: -sin(x) = sin(-x)</p><p>y/r</p><ul><li><p>r = asin(b0-x) + y</p></li><li><p>a: amplitude</p></li><li><p>b: period (2<strong>π</strong>/b)</p></li><li><p>y: shift up or down</p></li><li><p>x: shift left or right</p></li></ul><p>Frequency: how many cycles occur in 2<strong>π</strong></p>
2
New cards

cos (x)

even function: symmetry over y-axis

def of even: cos(x) = cos(-x)

x/r

  • r = acos(b0-x) + y

  • a: amplitude

  • b: period (2π/b)

  • y: shift up or down

  • x: shift left or right

Frequency: how many cycles occur in 2π

<p>even function: symmetry over y-axis</p><p>def of even: cos(x) = cos(-x)</p><p>x/r</p><ul><li><p>r = acos(b0-x) + y</p></li><li><p>a: amplitude</p></li><li><p>b: period (2<strong>π</strong>/b)</p></li><li><p>y: shift up or down</p></li><li><p>x: shift left or right</p></li></ul><p>Frequency: how many cycles occur in 2<strong>π</strong></p>
3
New cards

csc(x)

1/ sin(x): odd function symmetry abt the origin

1/y

def of odd: -csc(x) = csc(-x)

  • sketch sin → make csc

  • as sin → 0 csc → undef bc the reciprocal of 0/1 is 1/0

  • sin can be infinitely small vs csc can be infinitely large bc denom vs numerator inc

Frequency: how many cycles occur in 2π

<p>1/ sin(x): odd function symmetry abt the origin</p><p>1/y</p><p>def of odd: -csc(x) = csc(-x)</p><ul><li><p>sketch sin → make csc</p></li><li><p>as sin → 0 csc → undef bc the reciprocal of 0/1 is 1/0</p></li><li><p>sin can be infinitely small vs csc can be infinitely large bc denom vs numerator inc</p></li></ul><p>Frequency: how many cycles occur in 2<strong>π</strong></p>
4
New cards

sec(x)

1/ cos(x): even function symmetry over y-axis

1/x

def of odd: sec(x) = sec(-x)

  • sketch cos→ make sec

  • as cos→ 0 sec→ undef bc the reciprocal of 0/1 is 1/0

  • cos can be infinitely small vs sec can be infinitely large bc denom vs numerator inc

Frequency: how many cycles occur in 2π

<p>1/ cos(x): even function symmetry over y-axis</p><p>1/x</p><p>def of odd: sec(x) = sec(-x)</p><ul><li><p>sketch cos→ make sec</p></li><li><p>as cos→ 0 sec→ undef bc the reciprocal of 0/1 is 1/0</p></li><li><p>cos can be infinitely small vs sec can be infinitely large bc denom vs numerator inc</p></li></ul><p>Frequency: how many cycles occur in 2<strong>π</strong></p>
5
New cards

arcsin(x) = sin^-1(x)

sin(x)

→ D: [-∞, ∞]

→ R: [-1, 1]

arcsin(x) is reciprocal + range restricted to make function

→ D: [-1,1]

→ R: [-π/2, π/2]

<p>sin(x) </p><p>→ D: [-<span>∞, ∞]</span></p><p><span>→ R: [-1, 1]</span></p><p>arcsin(x) is reciprocal + range restricted to make function</p><p>→ D: [-1,1]</p><p>→ R: [-<strong>π/2, π/2]</strong></p>
6
New cards

arccos(x) = cos^-1(x)

cos(x)

→ D: [-∞, ∞]

→ R: [-1, 1]

arccos(x) is reciprocal + range restricted to make function

→ D: [-1,1]

→ R: [o, π]

<p>cos(x) </p><p>→ D: [-∞, ∞]</p><p>→ R: [-1, 1]</p><p>arccos(x) is reciprocal + range restricted to make function</p><p>→ D: [-1,1]</p><p>→ R: [o<strong>, π]</strong></p>
7
New cards

tan(x)

odd function: symmetry about the origin

def of odd: -tan(x) = tan(-x)

sin(x)/cos(x)

as tan→π/2 undef bc sin/cos = 1/0

y/x

  • r = atan(b0-x) + y

  • a: amplitude

  • b: period (2π/b)

  • y: shift up or down

  • x: shift left or right

Frequency: how many cycles occur in 2π

<p>odd function: symmetry about the origin</p><p>def of odd: -tan(x) = tan(-x)</p><p>sin(x)/cos(x)</p><p>as tan→<strong>π/2 </strong>undef bc sin/cos = 1/0</p><p>y/x</p><ul><li><p>r = atan(b0-x) + y</p></li><li><p>a: amplitude</p></li><li><p>b: period (2<strong>π</strong>/b)</p></li><li><p>y: shift up or down</p></li><li><p>x: shift left or right</p></li></ul><p>Frequency: how many cycles occur in 2<strong>π</strong></p>
8
New cards

cot(x)

odd function: symmetry about the origin

def of odd: -cot(x) = cot(-x)

cos(x)/sin(x)

as cot→0 undef bc cos/sin= 1/0

x/y

  • r = acot(b0-x) + y

  • a: amplitude

  • b: period (2π/b)

  • y: shift up or down

  • x: shift left or right

Frequency: how many cycles occur in 2π

<p>odd function: symmetry about the origin</p><p>def of odd: -cot(x) = cot(-x)</p><p>cos(x)/sin(x)</p><p>as cot→<strong>0 </strong>undef bc cos/sin= 1/0</p><p>x/y</p><ul><li><p>r = acot(b0-x) + y</p></li><li><p>a: amplitude</p></li><li><p>b: period (2<strong>π</strong>/b)</p></li><li><p>y: shift up or down</p></li><li><p>x: shift left or right</p></li></ul><p>Frequency: how many cycles occur in 2<strong>π</strong></p>
9
New cards

linear function

y=mx+b

<p>y=mx+b</p>
10
New cards

Quadratic Standard Form

y=ax^2+bx+c

<p>y=ax^2+bx+c</p>
11
New cards

Quadratic Factored Form

y=a(x-p)(x-q)

<p>y=a(x-p)(x-q)</p>
12
New cards

Quadratic Vertex Form

y= a(x-h)^2+k; (h,k) (even func symmetry over y-axis)

<p>y= a(x-h)^2+k; (h,k)  (even func symmetry over y-axis)</p>
13
New cards

cubic function

y=a(x)^3

y=a(x+x)³ + y

<p>y=a(x)^3 </p><p>y=a(x+x)³ + y</p>
14
New cards

Square Root Function

y=a√x-h +k

<p>y=a√x-h +k</p>
15
New cards

Absolute Value Function

y=a|x-h|+k (even func symmetry over y-axis)

<p>y=a|x-h|+k (even func symmetry over y-axis)</p>
16
New cards

Exponential Growth or Decay Formula

y=ab^x

<p>y=ab^x</p>
17
New cards

logarithmic function

y= logbase b (x)

y= log(x-x)+y

negative w x reflects over y-axis

negative in front reflects over x-axis

<p>y= logbase b (x)</p><p>y= log(x-x)+y</p><p>negative w x reflects over y-axis</p><p>negative in front reflects over x-axis</p>
18
New cards

rational functions

ax^m +….

/ bx^n + …

polynomial/polynomial

  1. factor

  2. infinite discontinuity: denom to 0 (vertical asymptote)

  3. removable discontinuity: cancel out, set to 0, plug back in

  4. end behavior asymptote (horizontal): to what power / coeff

    1. m=n → y=a/b

    2. m < n y=0

    3. m > n slanted asymptote: polynomial long division (numerator degree is 1 higher)

  5. x-int set equation to 0

  6. y-int make x 0

19
New cards

if there are 2 vertical asymptotes/infinite asymptotes check for?

crossing: set equation equal to horizontal asymptote & if you get a # it crosses!