Derivatives

studied byStudied by 158 people
5.0(2)
learn
LearnA personalized and smart learning plan
exam
Practice TestTake a test on your terms and definitions
spaced repetition
Spaced RepetitionScientifically backed study method
heart puzzle
Matching GameHow quick can you match all your cards?
flashcards
FlashcardsStudy terms and definitions

1 / 30

flashcard set

Earn XP

Description and Tags

31 Terms

1

f(x)g(x)= . .

f’(x)g(x)+f(x)g’(x) (*Product Rule*)

New cards
2

f(x)/g(x)= . . .

f’(x)g(x)-f(x)g’(x)/(g(x))² (*Quotient Rule*)

New cards
3

d/dx[f(g(x))]= . . .

f’(g(x))g’(x) (*Chain Rule*)

New cards
4

d/dx(cf/(x))= . . .

cf’(x)

New cards
5

d/dx(x^n)= . . .

nx^n-1

New cards
6

d/dx(f(x)__+__g(x))= . . .

f’(x)__+__g’(x)

New cards
7

d/dx(c)= . . .

0

New cards
8

d/dx(e^g(x))= . . .

g’(x)e^g(x)

New cards
9

d/dx[ln(g(x))]= . . .

g’(x)/g(x)

New cards
10

d/dx[sin(x)]= . . .

cos(x)

New cards
11

d/dx[cos(x)]= . . .

-sin(x)

New cards
12

d/dx[csc(x)] = . . .

-csc(x)cot(x)

New cards
13

d/dx[sec(x)]= . . .

sec(x)tan(x)

New cards
14

d/dx[tan(x)]= . . .

sec²(x)

New cards
15

d/dx[cot(x)]= . . .

-csc²(x)

New cards
16

d/dx[sin⁻¹(x)]= . . .

1/√1-x²

New cards
17

d/dx[cos⁻¹(x)]= . . .

-1/√1-x²

New cards
18

d/dx[csc⁻¹(x)]= . . .

-1/lxl√1-x²

New cards
19

d/dx[sec⁻¹(x)]= . . .

1/lxl√1-x²

New cards
20

d/dx[tan⁻¹(x)]= . . .

1/1+x²

New cards
21

d/dx[cot⁻¹(x)]= . . .

-1/1+x²

New cards
22

d/dx[a^x]= . . .

a^x(ln(a))

New cards
23

d/dx[ln(x)]= . . .

1/x, x>0

New cards
24

d/dx[lnlxl]= . . .

1/x, x~~=0~~

New cards
25

d/dx[log[a](x)]= . . .

1/x(ln(a)), x>0

New cards
26

d/dx[sinh(x)]= . . .

cosh(x)

New cards
27

d/dx[cosh(x)]= . . .

sinh(x)

New cards
28

d/dx[tanh(x)]= . . .

sech²(x)

New cards
29

d/dx[csch(x)]= . . .

-csch(x)coth(x)

New cards
30

d/dx[sech(x)]= . . .

-sech(x)tanh(x)

New cards
31

d/dx[coth(x)]= . . .

-csch²(x)

New cards
robot