Derivatives

studied byStudied by 171 people
5.0(2)
learn
LearnA personalized and smart learning plan
exam
Practice TestTake a test on your terms and definitions
spaced repetition
Spaced RepetitionScientifically backed study method
heart puzzle
Matching GameHow quick can you match all your cards?
flashcards
FlashcardsStudy terms and definitions

1 / 30

flashcard set

Earn XP

Description and Tags

31 Terms

1
f(x)g(x)= . .
f’(x)g(x)+f(x)g’(x) (\**Product Rule*\*)
New cards
2
f(x)/g(x)= . . .
f’(x)g(x)-f(x)g’(x)/(g(x))² (\**Quotient Rule*\*)
New cards
3
d/dx\[f(g(x))\]= . . .
f’(g(x))g’(x) (\**Chain Rule**)
New cards
4
d/dx(cf/(x))= . . .
cf’(x)
New cards
5
d/dx(x^n)= . . .
nx^n-1
New cards
6
d/dx(f(x)__+__g(x))= . . .
f’(x)__+__g’(x)
New cards
7
d/dx(c)= . . .
0
New cards
8
d/dx(e^g(x))= . . .
g’(x)e^g(x)
New cards
9
d/dx\[ln(g(x))\]= . . .
g’(x)/g(x)
New cards
10
d/dx\[sin(x)\]= . . .
cos(x)
New cards
11
d/dx\[cos(x)\]= . . .
\-sin(x)
New cards
12
d/dx\[csc(x)\] = . . .
\-csc(x)cot(x)
New cards
13
d/dx\[sec(x)\]= . . .
sec(x)tan(x)
New cards
14
d/dx\[tan(x)\]= . . .
sec²(x)
New cards
15
d/dx\[cot(x)\]= . . .
\-csc²(x)
New cards
16
d/dx\[sin⁻¹(x)\]= . . .
1/√1-x²
New cards
17
d/dx\[cos⁻¹(x)\]= . . .
\-1/√1-x²
New cards
18
d/dx\[csc⁻¹(x)\]= . . .
\-1/lxl√1-x²
New cards
19
d/dx\[sec⁻¹(x)\]= . . .
1/lxl√1-x²
New cards
20
d/dx\[tan⁻¹(x)\]= . . .
1/1+x²
New cards
21
d/dx\[cot⁻¹(x)\]= . . .
\-1/1+x²
New cards
22
d/dx\[a^x\]= . . .
a^x(ln(a))
New cards
23
d/dx\[ln(x)\]= . . .
1/x, x>0
New cards
24
d/dx\[lnlxl\]= . . .
1/x, x~~*=0*~~
New cards
25
d/dx\[log\[a\](x)\]= . . .
1/x(ln(a)), x>0
New cards
26
d/dx\[sinh(x)\]= . . .
cosh(x)
New cards
27
d/dx\[cosh(x)\]= . . .
sinh(x)
New cards
28
d/dx\[tanh(x)\]= . . .
sech²(x)
New cards
29
d/dx\[csch(x)\]= . . .
\-csch(x)coth(x)
New cards
30
d/dx\[sech(x)\]= . . .
\-sech(x)tanh(x)
New cards
31
d/dx\[coth(x)\]= . . .
\-csch²(x)
New cards
robot