Studied by 59 people

5.0(1)

get a hint

hint

1

f(x)g(x)= . .

f’(x)g(x)+f(x)g’(x) (**Product Rule**)

New cards

2

f(x)/g(x)= . . .

f’(x)g(x)-f(x)g’(x)/(g(x))² (**Quotient Rule**)

New cards

3

d/dx[f(g(x))]= . . .

f’(g(x))g’(x) (**Chain Rule**)

New cards

4

d/dx(cf/(x))= . . .

cf’(x)

New cards

5

d/dx(x^n)= . . .

nx^n-1

New cards

6

d/dx(f(x)__+__g(x))= . . .

f’(x)__+__g’(x)

New cards

7

d/dx(c)= . . .

0

New cards

8

d/dx(e^g(x))= . . .

g’(x)e^g(x)

New cards

9

d/dx[ln(g(x))]= . . .

g’(x)/g(x)

New cards

10

d/dx[sin(x)]= . . .

cos(x)

New cards

11

d/dx[cos(x)]= . . .

-sin(x)

New cards

12

d/dx[csc(x)] = . . .

-csc(x)cot(x)

New cards

13

d/dx[sec(x)]= . . .

sec(x)tan(x)

New cards

14

d/dx[tan(x)]= . . .

sec²(x)

New cards

15

d/dx[cot(x)]= . . .

-csc²(x)

New cards

16

d/dx[sin⁻¹(x)]= . . .

1/√1-x²

New cards

17

d/dx[cos⁻¹(x)]= . . .

-1/√1-x²

New cards

18

d/dx[csc⁻¹(x)]= . . .

-1/lxl√1-x²

New cards

19

d/dx[sec⁻¹(x)]= . . .

1/lxl√1-x²

New cards

20

d/dx[tan⁻¹(x)]= . . .

1/1+x²

New cards

21

d/dx[cot⁻¹(x)]= . . .

-1/1+x²

New cards

22

d/dx[a^x]= . . .

a^x(ln(a))

New cards

23

d/dx[ln(x)]= . . .

1/x, x>0

New cards

24

d/dx[lnlxl]= . . .

1/x, x~~*=0*~~

New cards

25

d/dx[log[a](x)]= . . .

1/x(ln(a)), x>0

New cards

26

d/dx[sinh(x)]= . . .

cosh(x)

New cards

27

d/dx[cosh(x)]= . . .

sinh(x)

New cards

28

d/dx[tanh(x)]= . . .

sech²(x)

New cards

29

d/dx[csch(x)]= . . .

-csch(x)coth(x)

New cards

30

d/dx[sech(x)]= . . .

-sech(x)tanh(x)

New cards

31

d/dx[coth(x)]= . . .

-csch²(x)

New cards