Derivatives

5.0(2)
studied byStudied by 189 people
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/30

flashcard set

Earn XP

Description and Tags

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

31 Terms

1
New cards
f(x)g(x)= . .
f’(x)g(x)+f(x)g’(x) (\**Product Rule*\*)
2
New cards
f(x)/g(x)= . . .
f’(x)g(x)-f(x)g’(x)/(g(x))² (\**Quotient Rule*\*)
3
New cards
d/dx\[f(g(x))\]= . . .
f’(g(x))g’(x) (\**Chain Rule**)
4
New cards
d/dx(cf/(x))= . . .
cf’(x)
5
New cards
d/dx(x^n)= . . .
nx^n-1
6
New cards
d/dx(f(x)__+__g(x))= . . .
f’(x)__+__g’(x)
7
New cards
d/dx(c)= . . .
0
8
New cards
d/dx(e^g(x))= . . .
g’(x)e^g(x)
9
New cards
d/dx\[ln(g(x))\]= . . .
g’(x)/g(x)
10
New cards
d/dx\[sin(x)\]= . . .
cos(x)
11
New cards
d/dx\[cos(x)\]= . . .
\-sin(x)
12
New cards
d/dx\[csc(x)\] = . . .
\-csc(x)cot(x)
13
New cards
d/dx\[sec(x)\]= . . .
sec(x)tan(x)
14
New cards
d/dx\[tan(x)\]= . . .
sec²(x)
15
New cards
d/dx\[cot(x)\]= . . .
\-csc²(x)
16
New cards
d/dx\[sin⁻¹(x)\]= . . .
1/√1-x²
17
New cards
d/dx\[cos⁻¹(x)\]= . . .
\-1/√1-x²
18
New cards
d/dx\[csc⁻¹(x)\]= . . .
\-1/lxl√1-x²
19
New cards
d/dx\[sec⁻¹(x)\]= . . .
1/lxl√1-x²
20
New cards
d/dx\[tan⁻¹(x)\]= . . .
1/1+x²
21
New cards
d/dx\[cot⁻¹(x)\]= . . .
\-1/1+x²
22
New cards
d/dx\[a^x\]= . . .
a^x(ln(a))
23
New cards
d/dx\[ln(x)\]= . . .
1/x, x>0
24
New cards
d/dx\[lnlxl\]= . . .
1/x, x~~*=0*~~
25
New cards
d/dx\[log\[a\](x)\]= . . .
1/x(ln(a)), x>0
26
New cards
d/dx\[sinh(x)\]= . . .
cosh(x)
27
New cards
d/dx\[cosh(x)\]= . . .
sinh(x)
28
New cards
d/dx\[tanh(x)\]= . . .
sech²(x)
29
New cards
d/dx\[csch(x)\]= . . .
\-csch(x)coth(x)
30
New cards
d/dx\[sech(x)\]= . . .
\-sech(x)tanh(x)
31
New cards
d/dx\[coth(x)\]= . . .
\-csch²(x)