Statistical Modelling

0.0(0)
studied byStudied by 3 people
GameKnowt Play
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/39

flashcard set

Earn XP

Description and Tags

cries

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

40 Terms

1
New cards

Var(AY+b)

A (sigma) AT

2
New cards

Least Squares Estimates

Beta_hat = (XTX)-1XTy

3
New cards

Fitted Values

XB_hat = X(XTX)-1XTy

4
New cards

Unbiased Linear Estimator for Lamba

var(aTY) >= var(LambaTeta)

iff a = X(XTX)-1XTLamba

5
New cards

Confidence Interval for Bj

B_hatj +- t(alpha/2) * Standard Error * sqrt(cjj)

6
New cards

Confidence Interval for eta0

add 1+ to the sqrt for the prediction interval

<p>add 1+ to the sqrt for the prediction interval</p>
7
New cards

Leverage

OR for an mxn matrix => n/m
OR 1/n + (xi-x_bar)² / sum (xi-x_bar)²

<p>OR for an mxn matrix =&gt; n/m<br>OR 1/n + (x<sub>i</sub>-x_bar)² / sum (x<sub>i</sub>-x_bar)²</p>
8
New cards

Cook’s Distance

knowt flashcard image
9
New cards

B_hat for GLS

(XTV-1X)-1XTV-1Y

10
New cards

Var(B_hat) for GLS

sigma² (XTV-1X)-1

11
New cards

Weighted Least Squares

wi = 1/vi

12
New cards

Box Cox Transformation

knowt flashcard image
13
New cards

Inverse Box Cox Transformation

for lamba ≠ 0 => lamba*y + 1
for lamba = 0 => exp(y)

14
New cards

pii

exp(eta) / (1 + exp(eta))

15
New cards

eta

log(pii/(1-pii)) = logit(pii) = B0+B1x

16
New cards

Log-Likelihood Function

knowt flashcard image
17
New cards

Fisher Information Matrix

Var(S(B)) = I(B)
= Var(XT(Y - mu))
= XTVar(Y) X

= XTDX

Where S(B) = XT(Y-mu)

18
New cards

Newton - Raphson Algorithm

B(t+1) = B(t) - [S’(B(t))]-1S(B(t))

where S’(B(t)) = partial derivative of Sj wrt Bk

= partial derivate squared L/BjBk

19
New cards

Fisher Scoring

B(t+1) = B(t) + [I(B(t))]-1 + S(B(t))

= B(t) + (XTD(t)X)-1 XT(y-mu(t))

where mu(t) = nipii and D(t) = diag(nipii(1-pii))

20
New cards

B(0)

B(0) = (XTX)-1XTv

where v = log[(yi + 0.5)/(ni - yi + 0.5)]

21
New cards

Confidence Interval for Bj

B_hatj +- z(alpha/2) sqrt( [I(B)-1]jj )

22
New cards

Log Likelihood Ratio Test Statistic

G² = 2( L(B_hat) - L(B_hat0) )

23
New cards

Null Deviance

2 ( L(Saturated) - L(Null) )

24
New cards

Residual Deviance

2 ( L(Saturated) - L(Residual) )

25
New cards

Overdispersion

Var(Yi) > nipii (1-pii)

Underdispersed => Var(Yi) < nipii (1-pii)

Properly dispersed/fine => Var(Yi) = nipii (1-pii)

26
New cards

Log Odds Ratio

Bi = log ( (pi2/(1-pi2)) / (pi1/(1-pi1)) )

= logit(pi2) - logit(pi1) = B2 - B1

27
New cards

Increasing xi by 1 - Poisson

Y’i = exp(B_hat1) * Yi

28
New cards

Predict Y for Poisson Regression

Y = exp(B0 + B1x)

29
New cards

Predict Y for Poisson Rate Regression

Y = offset * exp(B0 + B1x)

30
New cards

Root Mean Square Error (RMSE)

sqrt( 1/n + sum( yi - f(xi) ) ² )

31
New cards

cor( y , f(x) )²

= (TSS-RSS) / TSS = 1 - RSS/Tss

= 1 - sum( yi - f(x) )² / sum ( yi - y_bar )²

32
New cards

Adjusted R²

1 - ( RSS / (n-k-1) ) / (TSS / (n-1) )

33
New cards

Cp

1/n (RSS + 2k(sigma)²)

34
New cards

Mallow’s C’p

RSS/(sigma)² + 2k - n

35
New cards

AIC (Akaike Information Criterion)

2k - 2 ln (L)

36
New cards

AICc (Akaike Information Criterion Corrected)

AIC + [ 2k (k+1) / (n - k - 1) ]

37
New cards

BIC (Bayesian Information Criterion)

ln(n)k - 2 ln(L)

38
New cards

Cross Validation Estimate

sum [ nk /n MSEk]

where MSEk = (yi - y_hati)² / nk

39
New cards

Mean Absolute Error

1/n sum |yi - f(xi)|

40
New cards

Point Prediction

B0 + B1x + …