1/167
Chapter 13-19
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Δ S (+)
Spontaneous
Δ S (-)
Nonspontaneous
Δ G (+)
Nonspontaneous
Δ G (-)
Spontaneous
Δ Go = 0
Equilibrium
Ecell (+)
Spontaneous
Ecell (-)
Nonspontaneous
Polar vitamin
water soluble, not easily stored in body, excreted in urine
solution formation main factors
1) IMFs solute-solvent similar to pure solute and pure solvent 2) increased entropy upon mixing
Δ Hsolute
Endothermic, breaking solute IMFs, H > 0
Δ Hsolvent
Endothermic, breaking solvent IMFs, H > 0
Δ Hmix
Exothermic, formation of solute-solvent interactions, H < 0
Hsolution = 0
solution will form if entropy increases
Hsolution < 0
exothermic, solution forms if entropy increases, warm to touch
Hsolution > 0
endothermic, solution forms if entropy increases, cool to touch
Hsolute for ionic solute
negative Hlattice
Hsolution = Hsolute + Hhydration
Aqueous solutions with ionic solutes, where Hhydration = Hsolvent + Hmix
saturated solution
no addition solute can dissolve, dissolved solute in dynamic equilibrium with solute solute
unsaturated solution
more solute can dissolve, no undissolved solute so no dynamic equilibrium
supersaturated solution
more than equilibrium amount of solute dissolved, unstable and precipitates easily
impact of temperature on solid solute
no effect
impact of temperature on gaseous solute
less soluble under higher temperatures
Sgas = KHPgas
Henry’s Law— quantifies the solubility of a gas (S) in a liquid by its partial pressure (P) above the liquid, where K is a constant at a given temperature.
Sgas
molarity (M)
KH
Henry’s constant (M/atm)
Pgas
partial pressure of a gas solute above solution (atm)
Molarity (M)
mol / L
Molality (m)
mol / kg solvent
mole fraction
moles of a component divided by total moles in a mixture
percent by mass
mass of component / total mass of mixture * 100
ppm
mass solute/mass solution * 106
ppb
mass solute/mass solution * 109
colligative properties
properties that only depend on # of particles in solution
vapor pressure of a liquid
pressure of a gas above its liquid in equilibrium
vapor pressure lowering
solvent’s vapor pressure decreases when a solute is added
Raoult’s Law
Psolution = Xsolvent P°solvent
Ideal solution
A solution that follows Raoult's Law at all concentrations, exhibiting no significant interactions between solute and solvent.
Positive deviation from ideal solution
solute-solvent interactions are significantly weaker than solvent-solvent interactions
Negative deviation from ideal solution
solute-solvent interactions are significantly stronger than solvent-solvent interactions
van’t hoff factor (i)
ratio of moles of solute particles to moles of formula units dissolved. If a solute dissociates 100%, i is equal to the number of particles per formula unit.
ion pairing
oppositely charged ions associate in solution, causing imeasured to be lower than iexpected
collision model
reactions occur when particles collide, breaking and forming bonds. More collisions and higher energy collisions = faster rate
factors impacting reaction rates
concentration of reactants, temperature of reaction, structure and orientation of colliding particles
generalized reaction rate aA + bB —> cC + dD
(-1/a)(ΔA/Δt) = (1/c)(ΔC/Δt)
average rate
rate of a reaction over a time interval. can change as the reaction proceeds
instantaneous rate
rate of a reaction at a specific instant, equal to the slope of the tangent
rate law, A + B —> products
rate = k[A]m[B]n
integrated rate laws
used for determining amount of reactant present at a certain time
linear relationship of zero order
[A]t vs t
linear relationship of first order
ln[A]t vs t
linear relationship of second order
1/[A]t vs t
Frequency factor (A)
the number of times a reactant approaches the activation barrier. product of collision frequency (z) and orientation factor (p)
exponential factor
e(-Ea/RT) the fraction of approaches with enough energy to surmount the activation barrier
elementary reaction
a single reaction that cannot be broken down into simpler steps. form a reaction mechanism
molecularity
number of reactant molecules involved in an elementary reaction. the lower the # of particles, the less stringent the requirements for effective collisions
rate law of elementary reaction
CAN be determined directly from stoichiometry
rate determining step
the slowest elementary reaction within a reaction mechanism. has the largest Ea
dynamic equilibrium
rate of forward rxn equals rate of reverse rxn
equilibrium constant
equilibrium ratio of concentrations/pressures of products raised to stoichiometric coefficients over the concentrations/pressures of reactants raised to their stoichiometric coefficients.
equilibrium constant dependence on balanced reaction
changing direction inverts K
multiplying coefficients by a factor raises K to that factor
when adding constituent reactions, K1K2=Koverall
reaction quotient (Q)
Q = K equilibrium
Q < K reaction will go forwards
Q > K reverse reaction will occur
Le Chatliers Principle
system will shift in direction to re establish equilibrium
Arrhenius acid
molecular compound that dissociates in water to form H+/H3O+
Arrhenius base
compound that generates OH- in water
six strong acids
HCl, HBr, HI, HNO3, HClO4, H2SO4
Bronsted-Lowery acid
proton (H+) donor
Bronsted-Lowery base
proton (H+) acceptor
neutralization reaction
H+ is transferred from an acid to a base
amphoteric
species can act as a base or acid (i.e., H2O)
conjugate acid-base pairs
two substances related to each other by the transfer of a proton
Binary acid (HX) strength
increases down a group, increases across a period
Oxyacid (H-O-Y) strength
increases with the number of oxygen atoms and electronegativity of Y
impact of resonance stabilization on oxyacid strength
anions that exhibit resonance stabilization act as stronger acids when protonated
Acid ionization constant (KA)
how much a weak acid dissociates in water. KA=[H+][A-]/[HA]
Autoionization of water
2H2O (l) ⇌ H3O+ (aq) + OH- (aq)
Water dissociation constant (KW)
KW = [H3O+][OH-] = 1.0×10-14 M
pH
-log[H3O+]
pOH
-log[OH-]
percent ionization of an acid (HA)
the percentage of added acid molecules that actually dissociate into H3O+ and anion (A-)
percent ionization
[H3O+]/[HA] x 100%
pH of a single strong acid in water
calculate [H3O+] from complete dissociation of strong acid, neglect [H3O+] from auto ionization of water unless strong acid is very dilute
pH of two strong acids in water
calculate moles of H3O+ separately and add, divide by total volume of solution (L) to get [H3O+]
pH of single weak acid in water
calculate [H3O+] from HA partial dissociation using an ICE table, typically neglect [H3O+] from auto ionization of water.
pH of two weak acids in water
the weak acid with the larger KA will dictate the pH of the overall mixture
pH of strong/weak acid mixture
calculate [H3O+] from complete dissociation of strong acid, use as initial concentration in ICE table. use ICE table to calculate [H3O+] from partial dissociation of weak acid to determine if contributes significantly to total [H3O+]
Base Ionization Constant (KB)
[BH+][OH-]/[B]
pH of strong/weak base mixture
calculate [OH-] from dissociation of strong base and use as initial [OH-] in ICE table. use ICE table to calculate [OH-] from weak base to see if contributes significantly to total
acid-base properties of ions
determined by the strength of its conjugate
Ions that do NOT impact pH
anions that are conjugate bases of STRONG acids
cations that are counter ions of STRONG bases
Ions that make solutions BASIC
anions that are conjugate bases of weak acids
Ions that make solutions ACIDIC
cations that are conjugate acids of weak bases
cations that are small and highly charged, forming a complex ion with water making an ionizable H+
Polyprotic acid
multiple ionizable protons, each dissociation step has its own KA value
pH of a polyprotic acid
typically calculated using KA of the first dissociation step, except in dilute solutions
H2SO4
special case where first dissociation step is complete but second is partial
Lewis acid
lone pair acceptor
Lewis base
lone pair donor
buffer
solution that resists pH changes. essential components: either a weak base and its conjugate acid or a weak acid and its conjugate base
common ion effect
when a weak acid is added to a solution that contains its anion, it will dissociate less due to Le Chatlier’s principle
calculating the pH of a buffer after adding strong component
allow strong component to react to completion
use Henderson hasselbalch and pKa to calculate final pH
characteristics of an effective buffer
relative concentrations of weak components should be equal or close
absolute concentrations of weak components should be high