Module 11: Programmed Cell Death

0.0(0)
studied byStudied by 0 people
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/28

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

29 Terms

1
New cards

Why does apoptosis occur?

Maintains balance between cell growth and death

  • 50–70 billion cells die daily via apoptosis

  • Prevents diseases like cancer (too little cell loss)

  • Dr. Horvitz won Nobel Prize for apoptosis research in C. elegans

<p><strong>Maintains balance between cell growth and death</strong></p><ul><li><p>50–70 billion cells die daily via apoptosis</p></li><li><p>Prevents diseases like cancer (too little cell loss)</p></li><li><p>Dr. Horvitz won Nobel Prize for apoptosis research in <em>C. elegans</em></p></li></ul><p></p>
2
New cards

What regulates apoptosis in cells?

A network of signaling proteins

  • Just like mitosis, apoptosis is highly regulated

  • Triggered by internal/external signals

<p><strong>A network of signaling proteins</strong></p><ul><li><p>Just like mitosis, apoptosis is highly regulated</p></li><li><p>Triggered by internal/external signals</p></li></ul><p></p>
3
New cards

How is apoptosis important during development?

Shapes body structures by removing excess cells

  • Example: webbing between fingers/toes (week 6) removed by apoptosis (week 11)

  • Without apoptosis → webbing remains

<p><strong>Shapes body structures by removing excess cells</strong></p><ul><li><p>Example: webbing between fingers/toes (week 6) removed by apoptosis (week 11)</p></li><li><p>Without apoptosis → webbing remains</p></li></ul><p></p>
4
New cards

What does the TUNEL assay detect?

Cells undergoing apoptosis

  • Stains DNA breaks with fluorescent dUTP by terminal deoxynucleotidyl transferase

  • Bright green dots = apoptotic cells

  • Shows cell death between developing mouse digits

<p><strong>Cells undergoing apoptosis</strong></p><ul><li><p>Stains DNA breaks with fluorescent dUTP by terminal deoxynucleotidyl transferase</p></li><li><p>Bright green dots = apoptotic cells</p></li><li><p>Shows cell death between developing mouse digits</p></li></ul><p></p>
5
New cards

How does apoptosis affect tadpole development?

Causes tail loss during metamorphosis

  • Triggered by thyroid hormone

  • Similar tail loss happens in human embryo

<p><strong>Causes tail loss during metamorphosis</strong></p><ul><li><p>Triggered by thyroid hormone</p></li><li><p>Similar tail loss happens in human embryo</p></li></ul><p></p>
6
New cards

Why is apoptosis important in brain development?

Removes neurons that don’t make proper connections

  • Up to 50% of neurons die

  • Ensures correct matching of nerve and target cells

<p><strong>Removes neurons that don’t make proper connections</strong></p><ul><li><p>Up to 50% of neurons die</p></li><li><p>Ensures correct matching of nerve and target cells</p></li></ul><p></p>
7
New cards

How can apoptosis be harmful?

Excessive apoptosis leads to disease

  • Alzheimer’s: hippocampus neuron death and certain parts of cerebral cortex

  • Huntington’s: striatum neuron death

  • Parkinson’s: dopamine neuron loss in substantia nigra

  • Duchenne muscular dystrophy: muscle degeneration from cell death

<p><strong>Excessive apoptosis leads to disease</strong></p><ul><li><p>Alzheimer’s: hippocampus neuron death and certain parts of cerebral cortex</p></li><li><p>Huntington’s: striatum neuron death</p></li><li><p>Parkinson’s: dopamine neuron loss in substantia nigra</p></li><li><p>Duchenne muscular dystrophy: muscle degeneration from cell death</p></li></ul><p></p>
8
New cards

What are the two types of cell death?

Necrosis and apoptosis

  • Necrosis = unregulated, causes inflammation

  • Apoptosis = controlled, clean, and safe cell removal

  • Apoptosis prevents damage to nearby cells

<p><strong>Necrosis and apoptosis</strong></p><ul><li><p><strong>Necrosis</strong> = unregulated, causes inflammation</p></li><li><p><strong>Apoptosis</strong> = controlled, clean, and safe cell removal</p></li><li><p>Apoptosis prevents damage to nearby cells</p></li></ul><p></p>
9
New cards

What are the three stages of apoptosis according to Dr. Horvitz?

  1. Cell execution

  2. Engulfment

  3. Clearance

    • Dr. Horvitz studied cell execution in C. elegans

    • Apoptosis is an active, stepwise process

<ol><li><p>Cell execution</p></li><li><p>Engulfment</p></li><li><p>Clearance</p><ul><li><p>Dr. Horvitz studied cell execution in <em>C. elegans</em></p></li></ul><ul><li><p>Apoptosis is an active, stepwise process</p></li></ul></li></ol><p></p>
10
New cards

What changes occur in a HeLa cell during apoptosis?

  • Cell shrinks

  • Membrane blebbing (protrusions or bulges occur)

  • Mitochondrial permeability changes

  • Nucleus and DNA degrade

  • Ends in formation of small, recyclable vesicles

<ul><li><p>Cell shrinks</p></li><li><p>Membrane blebbing (protrusions or bulges occur)</p></li><li><p>Mitochondrial permeability changes</p></li><li><p>Nucleus and DNA degrade</p></li><li><p>Ends in formation of small, recyclable vesicles</p></li></ul><p></p>
11
New cards

What structural changes occur in an apoptotic cell?

  • Nucleus:

    • Chromatin condenses

    • Nuclear envelope breaks down

    • DNA fragmented

    • Proteins degraded

  • Cytoplasm:

    • Condenses as components aggregate

  • Mitochondria:

    • Membrane becomes permeable

    • Proteins released into cytosol

  • Cell membrane:

    • Changes shape → forms blebs (protrusions)

    • Cell fragments into vesicles

  • Outcome:

    • Vesicles (apoptotic bodies) phagocytized

    • Cell contents recycled

  • SEM image comparison:

    • Normal cell: intact membranes, visible chromatin

    • Apoptotic cell: condensed DNA and far from nuclear membrane, altered membrane shape

<ul><li><p><strong>Nucleus:</strong></p><ul><li><p>Chromatin condenses</p></li><li><p>Nuclear envelope breaks down</p></li><li><p>DNA fragmented</p></li><li><p>Proteins degraded</p></li></ul></li><li><p><strong>Cytoplasm:</strong></p><ul><li><p>Condenses as components aggregate</p></li></ul></li><li><p><strong>Mitochondria:</strong></p><ul><li><p>Membrane becomes permeable</p></li><li><p>Proteins released into cytosol</p></li></ul></li><li><p><strong>Cell membrane:</strong></p><ul><li><p>Changes shape → forms blebs (protrusions)</p></li><li><p>Cell fragments into vesicles</p></li></ul></li><li><p><strong>Outcome:</strong></p><ul><li><p>Vesicles (apoptotic bodies) phagocytized</p></li><li><p>Cell contents recycled</p></li></ul></li><li><p><strong>SEM image comparison:</strong></p><ul><li><p><strong>Normal cell:</strong> intact membranes, visible chromatin</p></li><li><p><strong>Apoptotic cell:</strong> condensed DNA and far from nuclear membrane, altered membrane shape</p></li></ul></li></ul><p></p>
12
New cards

Why is C. elegans a good model for apoptosis studies?

  • 947 somatic cells traced from 1 zygote

  • 131 cells consistently undergo apoptosis

  • Predictable, well-mapped development

  • Easy to study effects of gene mutations

<ul><li><p>947 somatic cells traced from 1 zygote</p></li><li><p>131 cells consistently undergo apoptosis</p></li><li><p>Predictable, well-mapped development</p></li><li><p>Easy to study effects of gene mutations</p></li></ul><p></p>
13
New cards

What is the significance of the ced-1 mutation in C. elegans?

  • ced-1 mutation: cells die but aren’t engulfed by phagocytosis

  • ced-1 + ced-3 mutation: cells don’t undergo apoptosis

  • Screen used ced-1 mutants to identify essential apoptosis genes: ced-3, ced-4, ced-9, egl-1

    • Mammalian homologs exist for all four

    • Two homologs linked to human tumor formation due to failure in apoptosis

<ul><li><p>ced-1 mutation: cells die but aren’t engulfed by phagocytosis</p></li><li><p>ced-1 + ced-3 mutation: cells don’t undergo apoptosis</p></li><li><p>Screen used ced-1 mutants to identify essential apoptosis genes: <strong>ced-3, ced-4, ced-9, egl-1</strong></p><ul><li><p>Mammalian homologs exist for all four</p></li><li><p>Two homologs linked to <strong>human tumor formation</strong> due to failure in apoptosis</p></li></ul></li></ul><p></p>
14
New cards

What are the key genes and protein interactions in the C. elegans and mammalian apoptotic pathways?

In C. elegans

  • ced-3 & ced-4: essential for apoptosis

    • Form the caspase holoenzyme (a protease)

  • ced-9: inhibits apoptosis by blocking caspase activation

    • Loss-of-function → all cells die

  • egl-1: initiates apoptosis by inhibiting ced-9

In Mammals

  • EGL-1 homologs: Bid and Bim (BH3 family)

  • CED-9 homolog: Bcl-2 on mitochondrial membrane

    • Inhibits apoptosis; controls Bak/Bax (pro-apoptotic proteins)

  • CED-4 homolog: Apaf-1

  • CED-3 homolog: Caspase-9

    • Together form the apoptosome (mammalian version of caspase holoenzyme)

  • Caspase holoenzyme/apoptosome = protease → degrades proteins → cell death

  • Loss of ced-3 or ced-4: no apoptosis

  • Loss of ced-9: uncontrolled cell death

<p><strong>In <em>C. elegans</em></strong></p><ul><li><p><strong>ced-3 &amp; ced-4</strong>: essential for apoptosis</p><ul><li><p>Form the <strong>caspase holoenzyme</strong> (a protease)</p></li></ul></li><li><p><strong>ced-9</strong>: inhibits apoptosis by blocking caspase activation</p><ul><li><p>Loss-of-function → all cells die</p></li></ul></li><li><p><strong>egl-1</strong>: initiates apoptosis by inhibiting <strong>ced-9</strong></p></li></ul><p></p><p><strong>In Mammals</strong></p><ul><li><p><strong>EGL-1 homologs</strong>: <strong>Bid</strong> and <strong>Bim</strong> (BH3 family)</p></li><li><p><strong>CED-9 homolog</strong>: <strong>Bcl-2 </strong>on mitochondrial membrane</p><ul><li><p>Inhibits apoptosis; controls <strong>Bak/Bax</strong> (pro-apoptotic proteins)</p></li></ul></li><li><p><strong>CED-4 homolog</strong>: <strong>Apaf-1</strong></p></li><li><p><strong>CED-3 homolog</strong>: <strong>Caspase-9</strong></p><ul><li><p>Together form the <strong>apoptosome</strong> (mammalian version of caspase holoenzyme)</p></li></ul></li></ul><p></p><ul><li><p><strong>Caspase holoenzyme/apoptosome</strong> = protease → degrades proteins → cell death</p></li><li><p><strong>Loss of ced-3 or ced-4</strong>: no apoptosis</p></li><li><p><strong>Loss of ced-9</strong>: uncontrolled cell death</p></li></ul><p></p>
15
New cards

How does EGL-1 activate apoptosis in C. elegans?

  • CED-9 binds CED-4 dimers → keeps them inactive (prevents apoptosis)

  • EGL-1 binds CED-9releases CED-4

  • CED-4 joins CED-3 → forms caspase holoenzyme

  • Caspase activation → degrades cytosolic & nuclear proteins

  • Good model for mammalian apoptosome formation

<ul><li><p><strong>CED-9</strong> binds <strong>CED-4 dimers</strong> → keeps them <strong>inactive</strong> (prevents apoptosis)</p></li><li><p><strong>EGL-1</strong> binds <strong>CED-9</strong> → <strong>releases CED-4</strong></p></li><li><p><strong>CED-4</strong> joins <strong>CED-3</strong> → forms <strong>caspase holoenzyme</strong></p></li><li><p><strong>Caspase activation</strong> → degrades <strong>cytosolic &amp; nuclear proteins</strong></p></li><li><p>Good <strong>model for mammalian apoptosome</strong> formation</p></li></ul><p></p>
16
New cards

What is the role of Bcl-2 in mammalian apoptosis?

  • Bcl-2 = mammalian homolog of CED-9

  • Location: Outer mitochondrial membrane

  • Function: Maintains low permeability → prevents apoptosis

  • Inactivation of Bcl-2:

    • Inactivation = pore formation → apoptosis

    • Leads to mitochondrial permeabilization

    • Pores release apoptotic factors (e.g., cytochrome c)

<ul><li><p><strong>Bcl-2</strong> = mammalian homolog of <strong>CED-9</strong></p></li><li><p><strong>Location</strong>: Outer mitochondrial membrane</p></li><li><p><strong>Function</strong>: Maintains <strong>low permeability</strong> → prevents apoptosis</p></li><li><p><strong>Inactivation of Bcl-2</strong>:</p><ul><li><p>Inactivation = pore formation → apoptosis</p></li><li><p>Leads to <strong>mitochondrial permeabilization</strong></p></li><li><p>Pores release apoptotic factors (e.g., cytochrome c)</p></li></ul></li></ul><p></p>
17
New cards

How is apoptosis regulated by Bcl-2, Bad, and Bax in mammalian cells?

  • Bad (pro-apoptotic signal)

    • Inactive when phosphorylated and bound to 14-3-3

    • Dephosphorylation → released from 14-3-3 → binds to Bcl-2 → blocks anti-apoptotic action

  • Bax (CED-9 family)

    • Activated when Bcl-2 is inhibited

    • Forms pores in mitochondrial membrane

    • Releases cytochrome c into cytosol

  • Cytochrome c

    • Triggers apoptosome formation

    • Essential for caspase activation → cell death

  • Triggers of apoptosis

    • Intrinsic: DNA damage, cell stress

    • Extrinsic: External death signals

<p></p><ul><li><p><strong>Bad (pro-apoptotic signal)</strong></p><ul><li><p><strong>Inactive when phosphorylated</strong> and bound to <strong>14-3-3</strong></p></li><li><p><strong>Dephosphorylation</strong> → released from 14-3-3 → binds to Bcl-2 → blocks anti-apoptotic action</p></li></ul></li><li><p><strong>Bax (CED-9 family)</strong></p><ul><li><p>Activated when Bcl-2 is inhibited</p></li><li><p><strong>Forms pores</strong> in mitochondrial membrane</p></li><li><p><strong>Releases cytochrome c</strong> into cytosol</p></li></ul></li><li><p><strong>Cytochrome c</strong></p><ul><li><p>Triggers <strong>apoptosome formation</strong></p></li><li><p>Essential for <strong>caspase activation</strong> → cell death</p></li></ul></li><li><p><strong>Triggers of apoptosis</strong></p><ul><li><p><strong>Intrinsic:</strong> DNA damage, cell stress</p></li><li><p><strong>Extrinsic:</strong> External death signals</p></li></ul></li></ul><p></p>
18
New cards

How do trophic factors affect Bad and apoptosis?

  • Trophic factors → phosphorylate Bad → inhibit apoptosis

  • No trophic factors → Bad dephosphorylates → apoptosis

  • Kinase cascade keeps cell alive

  • Removal = death signal

<ul><li><p>Trophic factors → phosphorylate Bad → inhibit apoptosis</p></li><li><p>No trophic factors → Bad dephosphorylates → apoptosis</p></li><li><p>Kinase cascade keeps cell alive</p></li><li><p>Removal = death signal</p></li></ul><p></p>
19
New cards

What are the key steps in the apoptotic pathway in response to the absence of trophic factors?

  1. No trophic factor → Bad dephosphorylates

  2. Bad inhibits Bcl-2/Bcl-XL→ Bax activates

  3. Cytochrome c released

  4. Apaf-1 + cytochrome c → caspase activation

    • Caspase = cysteine protease which targets proteins in nuclear lamina + cytoskeleton

  5. Final apoptotic events

    • Chromatin condenses

    • Cytoplasm condenses

    • Nucleus fragments

    • Cell blebs → apoptotic bodies form

    • Apoptotic bodies phagocytosed by neighbors

20
New cards

Applied Lecture

Cancer

21
New cards

What is p53 and what does it do?

  • Tumor suppressor protein and transcription factor

  • Stops damaged cells from dividing → triggers apoptosis

  • Activates DNA repair and stress response pathways

  • Coordinates: cell cycle arrest, DNA repair, apoptosis, metabolism, anti-oxidant effects, etc.

22
New cards

What are the key domains of p53 protein?

  • Tetramer of 4 chains (393 amino acids each)

  • N-terminal:

    • TAD I & II → bind transcription machinery & MDM2

    • DNA-binding domain (DBD)

    • Nuclear export signal (NES)

  • C-terminal:

    • Oligomerization domain (OD) → forms tetramer

    • Nuclear localization signals (NLS x3)

    • Second NES

    • NLS + NES → regulate nuclear-cytosolic shuttling

<ul><li><p>Tetramer of 4 chains (393 amino acids each)</p></li><li><p><strong>N-terminal</strong>:</p><ul><li><p>TAD I &amp; II → bind transcription machinery &amp; MDM2</p></li><li><p>DNA-binding domain (DBD)</p></li><li><p>Nuclear export signal (NES)</p></li></ul></li><li><p><strong>C-terminal</strong>:</p><ul><li><p>Oligomerization domain (OD) → forms tetramer</p></li><li><p>Nuclear localization signals (NLS x3)</p></li><li><p>Second NES</p></li><li><p>NLS + NES → regulate nuclear-cytosolic shuttling</p></li></ul></li></ul><p></p>
23
New cards

How does p53 protect the genome?

  • Cell cycle arrest:

    • Activates p21 → inhibits cyclin E/Cdk2 and cyclin D/Cdk4 → G1 arrest

    • Regulates G2/M via 14-3-3σ and cdc25C

  • DNA repair:

    • Activates multiple repair pathways: NER (nucleotide excision repair), BER (base excision repair), MMR (mismatch repair), NHEJ (non-homologous end joining)

    • Halts cycle to allow DNA repair

    • Constantly surveys for damage

<ul><li><p><strong>Cell cycle arrest</strong>:</p><ul><li><p>Activates <strong>p21</strong> → inhibits cyclin E/Cdk2 and cyclin D/Cdk4 → G1 arrest</p></li><li><p>Regulates G2/M via <strong>14-3-3σ</strong> and <strong>cdc25C</strong></p></li></ul></li><li><p><strong>DNA repair</strong>:</p><ul><li><p>Activates multiple repair pathways: NER (nucleotide excision repair), BER (base excision repair), MMR (mismatch repair), NHEJ (non-homologous end joining)</p></li><li><p>Halts cycle to allow DNA repair</p></li><li><p>Constantly surveys for damage</p></li></ul></li></ul><p></p>
24
New cards

What happens when p53 or other tumor suppressors are mutated?

  • Checkpoint failure → cells divide with DNA damage

  • Loss of mitotic control → indefinite division

  • p53 normally halts cycle or induces apoptosis

  • Mutated p53 found in >50% of cancers

<ul><li><p>Checkpoint failure → cells divide with DNA damage</p></li><li><p>Loss of mitotic control → indefinite division</p></li><li><p><strong>p53</strong> normally halts cycle or induces apoptosis</p></li><li><p>Mutated p53 found in &gt;50% of cancers</p></li></ul><p></p>
25
New cards

How is p53 involved in cancer development?

  • Mutated/deleted in ~50% of cancers

  • Remaining cancers → p53 pathway disrupted

  • Mutations let cells bypass checkpoints, resist apoptosis, proliferate unchecked

  • Targeting p53 is difficult but under study

  • Future therapies may combine p53 targeting + immunotherapy

26
New cards

What are challenges in targeting mutant p53?

  • Hard to find low-molecular-weight drug to bind mutant p53

  • Mutant p53 is nuclear → inaccessible to many drugs

    • Monoclonal antibodies don’t easily reach nucleus

  • Many different p53 mutations → unclear if one or multiple drugs needed

<ul><li><p>Hard to find low-molecular-weight drug to bind mutant p53</p></li><li><p>Mutant p53 is nuclear → inaccessible to many drugs</p><ul><li><p>Monoclonal antibodies don’t easily reach nucleus</p></li></ul></li><li><p>Many different p53 mutations → unclear if one or multiple drugs needed</p></li></ul><p></p>
27
New cards

What is PC14586 and how does it work?

  • Small molecule corrector for Y220C p53 mutation

  • Restores wild-type shape and function

  • Selectively binds crevice formed by Y220C mutation

  • Found in ~1–2% of all p53 mutations across many tumors

  • Shows promise in early (PYNNACLE) trials

<ul><li><p>Small molecule corrector for <strong>Y220C</strong> p53 mutation</p></li><li><p>Restores wild-type shape and function</p></li><li><p>Selectively binds crevice formed by Y220C mutation</p></li><li><p>Found in ~1–2% of all p53 mutations across many tumors</p></li><li><p>Shows promise in early (PYNNACLE) trials</p></li></ul><p></p>
28
New cards

How do cancer cells spread (metastasize)?

  • Use invadopodia to breach basement membranes

  • Migrate to distant body sites

  • Example: breast carcinoma cells

<ul><li><p>Use <strong>invadopodia</strong> to breach basement membranes</p></li><li><p>Migrate to distant body sites</p></li><li><p>Example: breast carcinoma cells</p></li></ul><p></p>
29
New cards

How does apoptosis relate to cancer?

  • Cancer = uncontrolled cell growth + failure of apoptosis

  • Damaged cells avoid death → continue dividing

  • Leads to tumor formation (benign or malignant)

<ul><li><p>Cancer = uncontrolled cell growth + failure of apoptosis</p></li><li><p>Damaged cells avoid death → continue dividing</p></li><li><p>Leads to tumor formation (benign or malignant)</p></li></ul><p></p>