Home
Explore
Exams
Search for anything
Login
Get started
Home
Series and Sequences
Series and Sequences
0.0
(0)
Rate it
Learn
Practice Test
Spaced Repetition
Match
Flashcards
Card Sorting
1/20
There's no tags or description
Looks like no tags are added yet.
Study Analytics
All
Learn
Practice Test
Matching
Spaced Repetition
Name
Mastery
Learn
Test
Matching
Spaced
No study sessions yet.
21 Terms
View all (21)
Star these 21
1
New cards
Geometric Series
\(\sum_{n=1}^{\infty} ar^n\) converges if \(0 \leq |r| < 1\).
2
New cards
Geometric Series
\(\sum_{n=1}^{\infty} ar^n\) diverges if \(|r| \geq 1\).
3
New cards
nth-term test
\(\sum_{n=1}^{\infty} a_n\) diverges if \(\lim_{n \to \infty} a_n \neq 0\).
4
New cards
P-series
\(\sum_{n=1}^{\infty} \frac{1}{n^p}\) converges if \(p > 1\).
5
New cards
P-series
\(\sum_{n=1}^{\infty} \frac{1}{n^p}\) diverges if \(p \leq 1\).
6
New cards
Alternating Series
\(\sum_{n=1}^{\infty} (-1)^n a_n\) converges if 1. \(|a_{n+1}| \leq |a_n|\) and 2. \(\lim_{n \to \infty} a_n = 0\).
7
New cards
Alternating Series
\(\sum_{n=1}^{\infty} (-1)^n a_n\) has an error bound of \(|S - S_n| < a_{n+1}\).
8
New cards
Integral Test
\(\sum_{n=1}^{\infty} a_n\) converges if \(\int_{1}^{\infty} f(x) \, dx\) converges, where \(f(n) = a_n\) is continuous, positive, and decreasing.
9
New cards
Integral Test
\(\sum_{n=1}^{\infty} a_n\) diverges if \(\int_{1}^{\infty} f(x) \, dx\) diverges, where \(f(n) = a_n\) is continuous, positive, and decreasing.
10
New cards
Direct Comparison Test
\(\sum_{n=1}^{\infty} a_n\) converges if \(0 < a_n \leq b_n\) and \(\sum_{n=1}^{\infty} b_n\) converges.
11
New cards
Direct Comparison Test
\(\sum_{n=1}^{\infty} a_n\) diverges if \(0 < b_n \leq a_n\) and \(\sum_{n=1}^{\infty} b_n\) diverges.
12
New cards
Ratio Test
\(\sum_{n=1}^{\infty} a_n\) converges if \(\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1\).
13
New cards
Ratio Test
\(\sum_{n=1}^{\infty} a_n\) diverges if \(\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1\).
14
New cards
Ratio Test
If \(\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1\), the test is inconclusive.
15
New cards
Limit Comparison Test
\(\sum_{n=1}^{\infty} a_n\) converges if \(a_n > 0\), \(b_n > 0\), \(\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0\) (finite and positive), and \(\sum_{n=1}^{\infty} b_n\) converges.
16
New cards
Limit Comparison Test
\(\sum_{n=1}^{\infty} a_n\) diverges if \(a_n > 0\), \(b_n > 0\), \(\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0\) (finite and positive), and \(\sum_{n=1}^{\infty} b_n\) diverges.
17
New cards
Root Test
\(\sum_{n=1}^{\infty} a_n\) converges if \(\lim_{n \to \infty} \sqrt[n]{|a_n|} < 1\).
18
New cards
Root Test
\(\sum_{n=1}^{\infty} a_n\) diverges if \(\lim_{n \to \infty} \sqrt[n]{|a_n|} > 1\).
19
New cards
Root Test
If \(\lim_{n \to \infty} \sqrt[n]{|a_n|} = 1\), the test is inconclusive.
20
New cards
Conditional Convergence
\(\sum_{n=1}^{\infty} a_n\) is conditionally convergent if \(\sum_{n=1}^{\infty} a_n\) converges but \(\sum_{n=1}^{\infty} |a_n|\) diverges.
21
New cards
Absolute Convergence
\(\sum_{n=1}^{\infty} a_n\) is absolutely convergent if \(\sum_{n=1}^{\infty} a_n\) and \(\sum_{n=1}^{\infty} |a_n|\) both converge.