13. Neuromuscular Transmission

0.0(0)
studied byStudied by 0 people
0.0(0)
full-widthCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/21

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

22 Terms

1
New cards

What controls voluntary muscle contractions?

Motor neurons control contraction

  • Primary motor cortex coordinates all voluntary contractions

  • Signals travel via upper and lower motor neurons

    • Upper motor neurons synapse with other motor neurons

    • Lower motor neurons synapse with the muscle

  • Final outcome → muscle contraction

<p>Motor neurons control contraction</p><ul><li><p>Primary motor cortex coordinates all voluntary contractions</p></li><li><p>Signals travel via upper and lower motor neurons</p><ul><li><p>Upper motor neurons synapse with other motor neurons</p></li><li><p>Lower motor neurons synapse with the muscle</p></li></ul></li><li><p>Final outcome → muscle contraction</p></li></ul><p></p>
2
New cards

What are the two types of synapses and how do they differ?

1. Chemical synapses

  • Found between neurons or at the NMJ

  • Neurotransmitters released from presynaptic neuron → bind postsynaptic receptors

  • Signal transduction: electrochemical → chemical → electrochemical

  • Slower due to chemical step

2. Electrical synapses

  • Rare, mostly in the brain

  • Direct flow of electrical current through gap junctions

  • Faster, no signal conversion required

<p><strong>1. Chemical synapses</strong></p><ul><li><p>Found <strong>between neurons</strong> or at the <strong>NMJ</strong></p></li></ul><ul><li><p><strong>Neurotransmitters</strong> released from presynaptic neuron → bind postsynaptic receptors</p></li><li><p>Signal transduction: <strong>electrochemical → chemical → electrochemical</strong></p></li><li><p><strong>Slower</strong> due to chemical step</p></li></ul><p><strong>2. Electrical synapses</strong></p><ul><li><p>Rare, mostly in the <strong>brain</strong></p></li><li><p><strong>Direct flow of electrical current</strong> through <strong>gap junctions</strong></p></li><li><p><strong>Faster</strong>, no signal conversion required</p></li></ul><p></p>
3
New cards

How does neuronal signalling achieve convergence?

Convergence = multiple presynaptic inputs integrated by a postsynaptic neuron

  • Occurs via neuronal pools

  • Brain has >1 billion neurons and >1 trillion synapses, allowing massive integration

<p><strong>Convergence</strong> = multiple presynaptic inputs integrated by a <strong>postsynaptic neuron</strong></p><ul><li><p>Occurs via <strong>neuronal pools</strong></p></li><li><p>Brain has <strong>&gt;1 billion neurons</strong> and <strong>&gt;1 trillion synapses</strong>, allowing massive integration</p></li></ul><p></p>
4
New cards

What are the two modes of chemical transmission and how do they differ?

1. Fast transmission (ionotropic)

  • Neurotransmitter binds ligand-gated ion channels → channel opens directly

  • Rapid response

  • Example: increase in Ca²⁺ triggers vesicle release at synapse

  • Receptor = channel

2. Slow transmission (metabotropic)

  • Neurotransmitter binds G-protein-coupled receptor → activates intracellular signaling → ion channels and other processes affected

  • Relies on secondary messengers

  • Slower, indirect effect

Note:

  • Single neurons can use both modes

  • Single neurotransmitter can act both ways

<p><strong>1. Fast transmission (ionotropic)</strong></p><ul><li><p>Neurotransmitter binds <strong>ligand-gated ion channels</strong> → channel opens directly</p></li><li><p>Rapid response</p></li><li><p>Example: increase in <strong>Ca²⁺</strong> triggers vesicle release at synapse</p></li><li><p><strong>Receptor = channel</strong></p></li></ul><p><strong>2. Slow transmission (metabotropic)</strong></p><ul><li><p>Neurotransmitter binds <strong>G-protein-coupled receptor</strong> → activates <strong>intracellular signaling</strong> → ion channels and other processes affected</p></li><li><p>Relies on <strong>secondary messengers</strong></p></li><li><p>Slower, indirect effect</p></li></ul><p><strong>Note:</strong></p><ul><li><p>Single neurons can use <strong>both modes</strong></p></li><li><p>Single neurotransmitter can act <strong>both ways</strong></p></li></ul><p></p>
5
New cards

How do chemical synapses function at the neuromuscular junction (NMJ)?

Presynaptic terminal contains vesicles storing neurotransmitter (ACh)

  • Action potential arrives → vesicles release ACh into synaptic cleft

  • Postsynaptic receptors bind ACh → ion channels open → change in membrane permeability → depolarization

  • Acetylcholinesterase breaks down ACh → prevents sustained signal

<p><strong>Presynaptic terminal</strong> contains vesicles storing <strong>neurotransmitter (ACh)</strong></p><ul><li><p><strong>Action potential</strong> arrives → vesicles release ACh into synaptic cleft</p></li><li><p><strong>Postsynaptic receptors</strong> bind ACh → <strong>ion channels open</strong> → change in <strong>membrane permeability</strong> → depolarization</p></li><li><p><strong>Acetylcholinesterase</strong> breaks down ACh → prevents sustained signal</p></li></ul><p></p>
6
New cards

How does acetylcholine act via fast transmission?

Receptor: Nicotinic ACh receptor (nAChR)

  • Transmembrane protein complex, 5 subunits (2α subunits bind 1 ACh each)

  • Location: NMJ & postganglionic cells of vertebrate autonomic NS

  • Mechanism: ACh binding → direct opening of ligand-gated ion channels → rapid depolarization

<p><strong>Receptor</strong>: <strong>Nicotinic ACh receptor (nAChR)</strong></p><ul><li><p>Transmembrane protein complex, <strong>5 subunits</strong> (2α subunits bind 1 ACh each)</p></li><li><p><strong>Location</strong>: NMJ &amp; postganglionic cells of vertebrate autonomic NS</p></li><li><p><strong>Mechanism</strong>: ACh binding → <strong>direct opening of ligand-gated ion channels</strong> → rapid depolarization</p></li></ul><p></p>
7
New cards

How does acetylcholine act via slow transmission?

Receptor: Muscarinic ACh receptor (mAChR)G-protein-coupled receptor (GPCR)

  • Mechanism: ACh binds → GPCR activates G-protein on cytoplasmic side → indirectly opens ion channels (via second messengers like cAMP)

  • Location: target cells of parasympathetic NS (e.g., cardiac tissue) in vertebrates

  • Effect: slower, indirect modulation of postsynaptic cell activity

<p><strong>Receptor</strong>: <strong>Muscarinic ACh receptor (mAChR)</strong> → <strong>G-protein-coupled receptor (GPCR)</strong></p><ul><li><p><strong>Mechanism</strong>: ACh binds → GPCR activates <strong>G-protein on cytoplasmic side</strong> → indirectly opens <strong>ion channels</strong> (via second messengers like cAMP)</p></li><li><p><strong>Location</strong>: target cells of <strong>parasympathetic NS</strong> (e.g., cardiac tissue) in vertebrates</p></li><li><p><strong>Effect</strong>: slower, indirect modulation of postsynaptic cell activity </p></li></ul><p></p>
8
New cards

What happens at the NMJ when an action potential arrives?

Presynaptic AP → release millions of ACh molecules into synaptic cleft

  • Muscle depolarizes → opens voltage-gated Na⁺ & K⁺ channels → postsynaptic action potential

  • 1 neuron → 1 muscle fiber → organized contraction

  • Motor end plate = postsynaptic region of NMJ with high density of nAChRs; only here

  • Outside motor end plate: mostly voltage-gated Na⁺ & K⁺ channels, like in neurons

  • Graded end plate potential (EPP) → triggers AP; more ACh → more channels open → larger EPP → stronger depolarization

<p><strong>Presynaptic AP</strong> → release <strong>millions of ACh molecules</strong> into synaptic cleft</p><ul><li><p><strong>Muscle depolarizes</strong> → opens <strong>voltage-gated Na⁺ &amp; K⁺ channels</strong> → postsynaptic <strong>action potential</strong></p></li><li><p><strong>1 neuron → 1 muscle fiber</strong> → organized contraction</p></li><li><p><strong>Motor end plate</strong> = postsynaptic region of NMJ with <strong>high density of nAChRs</strong>; only here</p></li><li><p>Outside motor end plate: mostly <strong>voltage-gated Na⁺ &amp; K⁺ channels</strong>, like in neurons</p></li><li><p><strong>Graded end plate potential (EPP)</strong> → triggers AP; more ACh → more channels open → larger EPP → stronger depolarization</p></li></ul><p></p>
9
New cards

What is the End Plate Potential (EPP)?

  • ACh binds to AChR → opens ligand-gated channels → muscle depolarization

  • Depolarization opens nearby voltage-gated Na⁺ channels

  • If threshold reached → muscle action potential

<ul><li><p>ACh binds to AChR → opens ligand-gated channels → muscle depolarization</p></li></ul><ul><li><p>Depolarization opens nearby voltage-gated Na⁺ channels</p></li><li><p>If threshold reached → muscle action potential</p></li></ul><p></p>
10
New cards

How do nicotinic ACh receptors function in skeletal vs. cardiac muscle?

Skeletal muscle

  • nAChR = non-selective cation channel (permeable to Na⁺ & K⁺)

  • ΔgNa / ΔgK ≈ 1.4 → more Na⁺ influxdepolarization

  • Mediated by sympathetic NS

Cardiac muscle

  • ACh binds muscarinic (metabotropic) receptor

  • ↑ gK efflux → hyperpolarizationinhibits contractility

  • Mediated by parasympathetic NS

<p><strong>Skeletal muscle</strong></p><ul><li><p>nAChR = <strong>non-selective cation channel</strong> (permeable to Na⁺ &amp; K⁺)</p></li><li><p>ΔgNa / ΔgK ≈ 1.4 → more <strong>Na⁺ influx</strong> → <strong>depolarization</strong></p></li><li><p>Mediated by <strong>sympathetic NS</strong></p></li></ul><p><strong>Cardiac muscle</strong></p><ul><li><p>ACh binds <strong>muscarinic (metabotropic) receptor</strong></p></li><li><p>↑ gK efflux → <strong>hyperpolarization</strong> → <strong>inhibits contractility</strong></p></li><li><p>Mediated by <strong>parasympathetic NS</strong></p></li></ul><p></p>
11
New cards

What is the structure of the nicotinic ACh receptor?

ONLY TESTABLE PART: 2α subunits actively bind ACh, permeable to sodium and potassium (higher for sodium)

NOT-TESTABLE:

5 subunits: 2α, 1β, 1γ, 1δ at skeletal NMJ

  • Each subunit crosses membrane 4 times (M1–M4)

  • Openings at either end are large ~2-3nm in diameter, narrowest region ~-0.6nm (compare this to Na+ and K+ ion which are <0.3nm)

  • Central pore formed by 5 subunits, M2 (blue region) important for ion translocation

<p>ONLY TESTABLE PART:&nbsp;2α subunits actively bind ACh, permeable to sodium and potassium (higher for sodium)</p><p></p><p>NOT-TESTABLE:</p><p>5 subunits: 2α, 1β, 1γ, 1δ at skeletal NMJ</p><ul><li><p>Each subunit crosses membrane 4 times (M1–M4)</p></li><li><p>Openings at either end are large ~2-3nm in diameter, narrowest region ~-0.6nm (compare this to Na+ and K+ ion which are &lt;0.3nm)</p></li><li><p>Central pore formed by 5 subunits, M2 (blue region) important for ion translocation</p></li></ul><p></p>
12
New cards

How does the nAChR select for cations?

M2 region rings contain negatively charged amino acids at the mouth of the channel (inside & outside)
→ These attract and concentrate positively charged cations (Na⁺, K⁺)

  • Pore lining: uncharged polar amino acids (e.g., -OH, -NH₂ groups)
    → Provide a selective path for cations to pass through

  • Overall mechanism: combination of electrostatic attraction at channel entrances and polar lining inside pore ensures cation selectivity

<p><strong>M2 region rings</strong> contain negatively charged amino acids at the mouth of the channel (inside &amp; outside)<br>→ These <strong>attract and concentrate positively charged cations</strong> (Na⁺, K⁺)</p><ul><li><p><strong>Pore lining</strong>: uncharged polar amino acids (e.g., -OH, -NH₂ groups)<br>→ Provide a selective path for cations to pass through</p></li><li><p>Overall mechanism: combination of <strong>electrostatic attraction at channel entrances</strong> and <strong>polar lining inside pore</strong> ensures cation selectivity</p></li></ul><p></p>
13
New cards

How can we measure nAChR activation?

Outside-out patch clamp: electrode in ACh solution, measures current through single receptor → shows ligand-gated channel opens

<p><strong>Outside-out patch clamp</strong>: electrode in ACh solution, measures current through single receptor → shows ligand-gated channel opens</p>
14
New cards

What is the on-cell patch configuration and why is it used to measure nAChR activity?

On-cell patch clamp: measures receptor activity in intact cell membrane

  • Limitation: cannot dynamically change ACh concentration in pipette → typically use standard ACh concentration

  • Advantage: more physiologically relevant, preserves cytosolic environment and secondary signaling molecules, important for studying metabotropic receptors like muscarinic AChRs

<p><strong>On-cell patch clamp</strong>: measures receptor activity in <strong>intact cell membrane</strong></p><ul><li><p><strong>Limitation</strong>: cannot dynamically change ACh concentration in pipette → typically use <strong>standard ACh concentration</strong></p></li><li><p><strong>Advantage</strong>: more <strong>physiologically relevant</strong>, preserves <strong>cytosolic environment</strong> and <strong>secondary signaling molecules</strong>, important for studying <strong>metabotropic receptors</strong> like muscarinic AChRs</p></li></ul><p></p>
15
New cards

How are macroscopic currents recorded in a muscle fiber, and what does the End Plate Current (EPC) represent?

Individual nACh receptors open briefly when activated by ACh

  • Using a voltage clamp, the activity of many receptors at the synapse can be measured

  • In skeletal muscle, the brief openings are synchronized → produce a macroscopic current

  • This summed current is called the End Plate Current (EPC)

  • EPC reflects the influx of many positive ions (Na⁺) through nACh receptors, leading to postsynaptic depolarization

<p>Individual <strong>nACh receptors</strong> open briefly when activated by ACh</p><ul><li><p>Using a <strong>voltage clamp</strong>, the activity of many receptors at the synapse can be measured</p></li><li><p>In <strong>skeletal muscle</strong>, the brief openings are synchronized → produce a <strong>macroscopic current</strong></p></li><li><p>This summed current is called the <strong>End Plate Current (EPC)</strong></p></li><li><p>EPC reflects the <strong>influx of many positive ions (Na⁺) through nACh receptors</strong>, leading to postsynaptic depolarization</p></li></ul><p></p>
16
New cards

What is the End Plate Potential (EPP) and how does it lead to muscle contraction?

EPP = depolarization of muscle membrane ~+30–40 mV
→ This is threshold for muscle action potential

  • Mechanism: inward positive current through nACh receptors depolarizes postsynaptic membrane

  • EPP ≠ action potential; it triggers AP by opening voltage-gated Na⁺ & K⁺ channels along the muscle fiber

  • Result: suprathreshold depolarization → muscle action potential → contraction

<p><strong>EPP</strong> = depolarization of muscle membrane ~+30–40 mV<br>→ This is <strong>threshold for muscle action potential</strong></p><ul><li><p><strong>Mechanism</strong>: inward positive current through <strong>nACh receptors</strong> depolarizes postsynaptic membrane</p></li><li><p><strong>EPP ≠ action potential</strong>; it <strong>triggers AP</strong> by opening <strong>voltage-gated Na⁺ &amp; K⁺ channels</strong> along the muscle fiber</p></li><li><p>Result: <strong>suprathreshold depolarization → muscle action potential → contraction</strong></p></li></ul><p></p>
17
New cards

How can we identify which ions flow during the EPC?

Voltage clamp technique is used:

  1. Voltage clamp the muscle fiber using 2 electrodes

  2. Simultaneously stimulate the presynaptic motor neuron → ACh release

  3. Record macroscopic EPCs in response to ACh

  • This allows determination of ion fluxes (Na⁺, K⁺) through nACh receptors at the NMJ

<p><strong>Voltage clamp technique</strong> is used:</p><ol><li><p>Voltage clamp the muscle fiber using <strong>2 electrodes</strong></p></li><li><p><strong>Simultaneously stimulate</strong> the presynaptic motor neuron → ACh release</p></li><li><p>Record <strong>macroscopic EPCs</strong> in response to ACh</p></li></ol><ul><li><p>This allows determination of <strong>ion fluxes</strong> (Na⁺, K⁺) through nACh receptors at the NMJ</p></li></ul><p></p>
18
New cards

How does membrane potential affect the End Plate Current (EPC) in skeletal muscle, and what is the reversal potential?

EPC amplitude & polarity depend on membrane potential (Em):

  • Em more negative than resting (-90 mV) → larger inward EPC (stronger Na⁺ influx)

  • Em more positive than resting → smaller EPC; at very positive potentials → outward current (K⁺ efflux dominates)

  • Reversal potential (ER) = Em where net current = 0

    • For nAChR, ER ≈ 0 mV

    • At ER, EPC reverses direction (inward → outward)

  • Key point: ER indicates channel ion selectivity; current direction depends on Na⁺ and K⁺ driving forces

<p><strong>EPC amplitude &amp; polarity depend on membrane potential (Em):</strong></p><ul><li><p><strong>Em more negative than resting (-90 mV)</strong> → larger <strong>inward EPC</strong> (stronger Na⁺ influx)</p></li><li><p><strong>Em more positive than resting</strong> → smaller EPC; at very positive potentials → <strong>outward current</strong> (K⁺ efflux dominates)</p></li><li><p><strong>Reversal potential (ER)</strong> = Em where <strong>net current = 0</strong></p><ul><li><p>For <strong>nAChR</strong>, ER ≈ 0 mV</p></li><li><p>At ER, EPC <strong>reverses direction</strong> (inward → outward)</p></li></ul></li><li><p><strong>Key point:</strong> ER indicates <strong>channel ion selectivity</strong>; current direction depends on <strong>Na⁺ and K⁺ driving forces</strong></p></li></ul><p></p>
19
New cards

How can we determine which ions flow during the End Plate Current (EPC) through nicotinic ACh receptors?

nAChR channels are permeable to both Na⁺ and K⁺

  • Reversal potential (ER) is between ENa and EK, not equal to either

  • Changing membrane potential (Em) alters Na⁺ & K⁺ flux → affects amplitude & polarity of EPC/EPP

    • Em = EK → K⁺ has no driving force → EPC is inward Na⁺ current

    • Em = 0 mV (ER) → Na⁺ flux = K⁺ flux → no net current

    • Em = ENa → Na⁺ has no driving force → EPC is outward K⁺ current

  • Resting muscle potential: Vm ≈ -90 mV → inward Na⁺ dominates EPC

<p><strong>nAChR channels</strong> are permeable to <strong>both Na⁺ and K⁺</strong></p><ul><li><p><strong>Reversal potential (ER)</strong> is <strong>between ENa and EK</strong>, not equal to either</p></li><li><p><strong>Changing membrane potential (Em)</strong> alters Na⁺ &amp; K⁺ flux → affects <strong>amplitude &amp; polarity</strong> of EPC/EPP</p><ul><li><p><strong>Em = EK</strong> → K⁺ has no driving force → EPC is <strong>inward Na⁺ current</strong></p></li><li><p><strong>Em = 0 mV (ER)</strong> → Na⁺ flux = K⁺ flux → <strong>no net current</strong></p></li><li><p><strong>Em = ENa</strong> → Na⁺ has no driving force → EPC is <strong>outward K⁺ current</strong></p></li></ul></li><li><p>Resting muscle potential: <strong>Vm ≈ -90 mV</strong> → inward Na⁺ dominates EPC</p></li></ul><p></p>
20
New cards

What are common probes for studying muscle nicotinic ACh receptors and how do they work?

  • Bungarotoxin

    • From banded krait snake (Bungarus multicinctus), 74-amino acid toxin

    • Irreversibly binds nAChRs → blocks neurotransmission

    • Competitive inhibitor

    • Used for initial purification of nACh receptor protein

  • Curare

    • Plant toxin from Chondrodendron tomentosum

    • Blocks nAChRs via competitive inhibition

<ul><li><p><strong>Bungarotoxin</strong></p><ul><li><p>From banded krait snake (<em>Bungarus multicinctus</em>), 74-amino acid toxin</p></li><li><p><strong>Irreversibly binds nAChRs</strong> → blocks neurotransmission</p></li><li><p><strong>Competitive inhibitor</strong></p></li><li><p>Used for <strong>initial purification of nACh receptor protein</strong></p></li></ul></li></ul><ul><li><p><strong>Curare</strong></p><ul><li><p>Plant toxin from <em>Chondrodendron tomentosum</em></p></li><li><p><strong>Blocks nAChRs</strong> via <strong>competitive inhibition</strong></p></li></ul></li></ul><p></p>
21
New cards

What is myasthenia gravis and how does it affect the neuromuscular junction?

Chronic neuromuscular disease → causes skeletal muscle weakness

  • Mechanism: autoantibodies attack nicotinic ACh receptors (nAChRs)

  • Result: impaired neuromuscular transmission → reduced muscle contraction

<p><strong>Chronic neuromuscular disease</strong> → causes <strong>skeletal muscle weakness</strong></p><ul><li><p><strong>Mechanism</strong>: autoantibodies attack <strong>nicotinic ACh receptors (nAChRs)</strong></p></li><li><p>Result: impaired <strong>neuromuscular transmission</strong> → reduced muscle contraction</p></li></ul><p></p>
22
New cards

How is myasthenia gravis treated pharmacologically?

Strategy: prolong ACh action at NMJ by reducing its breakdown

  • Drug example: Neostigmine → inhibits acetylcholinesterase

  • Result: more ACh available at nAChRs → improves muscle contraction

<p><strong>Strategy</strong>: prolong ACh action at NMJ by <strong>reducing its breakdown</strong></p><ul><li><p><strong>Drug example</strong>: <strong>Neostigmine</strong> → inhibits <strong>acetylcholinesterase</strong></p></li><li><p>Result: more ACh available at nAChRs → improves <strong>muscle contraction</strong></p></li></ul><p></p>