1/53
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
y=f(x) must be continuous where?
critical point: dy/dx=0 or undefined or endpoints
local minimum
dy/dx goes (-,0,+) or (-,undef.,+) or 2nd derivative >0
local maximum
dy/dx changes from + to 0 to - or + to undef. to - or 2nd derivative < 0
point of inflection
concavity changes, 2nd derivative goes from (+,0,-), (-,0,+), (+, undef, -) or (-, undef., +)
d/dx x^n
nx^n-1
d/dx sinx
cosx
d/dx cosx
-sinx
d/dx tanx
sec^2x
d/dx cotx
-csc^2x
d/dx secx
secxtanx
d/dx cscx
-cscxcotx
d/dx lnu
1/u du/dx
d/dx e^u
e^u du/dx
d/dx sin^-1u
1/√(1-u^2) du/dx
d/dx cos^-1x
1/√(1-x^2)
d/dx tan^-1x
1/(1+x^2)
d/dx cot^-1x
-1/(1+x^2)
d/dx sec^-1x
1/(|x| √(x^2-1))
d/dx csc^-1x
-1/(|x| √(x^2-1))
d/dx a^x
a^x ln(a)
d/dx loga(x)
1/xlna
ftc part 2
∫ab f(x) dx = F(b) - F(a)
ftc part 1
F(x) = ∫[a to x] f(t) dt, then F'(x) = f(x)
ivt
if f(x) is continuous on [a,b] and y is a number between f(a) and f(b), there is at least one number x=c in the open interval (a,b) where f(c)=y
mvt
if the function f(x) is continuous on [a,b] and the first derivative exists on the interval (a,b) then there's at least 1 number x=c in (a,b) where f'(c)=f(b)-f(a)/b-a
trapezoidal rule
∫ (a to b) = ((b-a)/2n)(f(x)+2f(x)+2f(x)+f(x))
mvt average value
if the function f(x) is continuous on [a,b] and the first derivative exists on the interval (a,b) then there's at least 1 number x=c in (a,b) where f'(c)= (a∫b f(b)-f(a))/b-a
disk method
V = pi ∫ R(x)^2 dx
washer method
V= pi ∫ [R(x)^2] - [r(x)^2]
general volume equation
v = a∫b A(x) dx
velocity
d/dt of position
acceleration
d/dt of velocity
displacement
t0∫tf vdt
distance
t0∫tf |v| dt
average velocity
final position - initial position / total time
∫x^n dx
x^(n+1)/(n+1) + C
∫ sinx dx
-cosx + c
∫tanx dx
ln |secx| + c
evt
every continuous function on a closed interval has a highest y value and lowest y value
∫secx dx
ln |secx+tanx| + c
∫ sec^2x dx
tanx + c
∫secxtanx
secx + c
∫ e^x dx
e^x + C
∫ 1/x dx
∫ ln|x| +c
∫cosx dx
sinx +c
∫cotxdx
ln|sinx+c|
∫cscx dx
ln|cscx-cotx| +c
∫csc^2x dx
-cotx + c
∫cscxcotxdx
-cscx+c
f(x) is increasing
f’(x) >0
f(x) is decreasing
f’(x) <0
concave up
f’’(x)>0
concave down
f’’(x)<0
point of inflection
f’’(x) changes sign