MATH 226 - Final Review

0.0(0)
studied byStudied by 0 people
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/71

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

72 Terms

1
New cards
<ul><li><p>Evaluate the integral</p></li><li><p>Explain why the integral is improper</p></li><li><p>Determine if the integral converges or diverges and explain why</p></li></ul><p></p>
  • Evaluate the integral

  • Explain why the integral is improper

  • Determine if the integral converges or diverges and explain why

  • The integral is improper because one of the bounds is infinite

  • The integral converges because the limit is finite

<ul><li><p>The integral is improper because one of the bounds is infinite</p></li><li><p>The integral converges because the limit is finite</p></li></ul><p></p>
2
New cards
<p><span>Use the Comparison Theorem to determine if the improper integral converges or diverges (do not evaluate the integral)</span></p>

Use the Comparison Theorem to determine if the improper integral converges or diverges (do not evaluate the integral)

knowt flashcard image
3
New cards
<p><span>Use the Comparison Theorem to determine if the improper integral converges or diverges (do not evaluate the integral)</span></p>

Use the Comparison Theorem to determine if the improper integral converges or diverges (do not evaluate the integral)

knowt flashcard image
4
New cards
<p>Evaluate the Integral</p>

Evaluate the Integral

knowt flashcard image
5
New cards
<p>Evaluate the integral</p>

Evaluate the integral

knowt flashcard image
6
New cards
<p>Evaluate the integral</p>

Evaluate the integral

knowt flashcard image
7
New cards
<p>Evaluate the integral</p>

Evaluate the integral

knowt flashcard image
8
New cards
<p>Evaluate the integral</p>

Evaluate the integral

knowt flashcard image
9
New cards
<p>Evaluate the integral</p>

Evaluate the integral

knowt flashcard image
10
New cards
<p>Evaluate the integral</p>

Evaluate the integral

knowt flashcard image
11
New cards
<p>Evaluate the integral</p>

Evaluate the integral

knowt flashcard image
12
New cards
<p>Evaluate the integral (stop right before you start integrating)</p>

Evaluate the integral (stop right before you start integrating)

knowt flashcard image
13
New cards
<p>Evaluate the integral</p>

Evaluate the integral

knowt flashcard image
14
New cards
<p>Evaluate the integral</p>

Evaluate the integral

knowt flashcard image
15
New cards
<p>Evaluate the integral</p>

Evaluate the integral

knowt flashcard image
16
New cards
<p>Evaluate the integral</p>

Evaluate the integral

knowt flashcard image
17
New cards
<p>Evaluate the integral</p>

Evaluate the integral

knowt flashcard image
18
New cards
<p>Evaluate the integral</p>

Evaluate the integral

The answer should have √(49-x²)

<p>The answer should have <span>√(49-x²)</span></p>
19
New cards
<p>Evaluate the integral</p>

Evaluate the integral

<p></p>
20
New cards
<p>Evaluate the integral</p>

Evaluate the integral

The answer should have √(9+x²)

<p><span>The answer should have √(9+x²)</span></p>
21
New cards
<p>Evaluate the integral</p>

Evaluate the integral

<p></p>
22
New cards
<p>Evaluate the integral</p>

Evaluate the integral

Only change the bounds when doing u sub for cosx/sin²x

<p>Only change the bounds when doing u sub for cosx/sin²x</p>
23
New cards
<p>Evaluate the integral</p>

Evaluate the integral

knowt flashcard image
24
New cards
<p>Evaluate the integral</p>

Evaluate the integral

knowt flashcard image
25
New cards
<p>Evaluate the integral</p>

Evaluate the integral

<p></p>
26
New cards
<p>Evaluate the integral</p>

Evaluate the integral

knowt flashcard image
27
New cards
<ul><li><p>Evaluate the integral</p></li><li><p>Explain why the integral is improper </p></li><li><p>Determine if the integral converges or diverges and explain why</p></li></ul><p></p>
  • Evaluate the integral

  • Explain why the integral is improper

  • Determine if the integral converges or diverges and explain why

  • The integral is improper because one of the bounds is infinite

  • The integral diverges because the limit is infinite

<ul><li><p>The integral is improper because one of the bounds is infinite</p></li><li><p>The integral diverges because the limit is infinite</p></li></ul><p></p>
28
New cards
<ul><li><p>Evaluate the integral</p></li><li><p>Explain why the integral is improper </p></li><li><p>Determine if the integral converges or diverges and explain why</p></li></ul><p></p>
  • Evaluate the integral

  • Explain why the integral is improper

  • Determine if the integral converges or diverges and explain why

  • The integral is improper because one of the bounds is infinite

  • The integral converges because the limit is finite

<ul><li><p>The integral is improper because one of the bounds is infinite</p></li><li><p>The integral converges because the limit is finite</p></li></ul><p></p>
29
New cards
<ul><li><p>Evaluate the integral</p></li><li><p>Explain why the integral is improper </p></li><li><p>Determine if the integral converges or diverges and explain why</p></li></ul><p></p>
  • Evaluate the integral

  • Explain why the integral is improper

  • Determine if the integral converges or diverges and explain why

  • The integral is improper because one of the bounds is infinite

  • The integral converges because the limit is finite

<ul><li><p>The integral is improper because one of the bounds is infinite</p></li><li><p>The integral converges because the limit is finite</p></li></ul><p></p>
30
New cards
<ul><li><p>Evaluate the integral</p></li><li><p>Explain why the integral is improper </p></li><li><p>Determine if the integral converges or diverges and explain why</p></li></ul><p></p>
  • Evaluate the integral

  • Explain why the integral is improper

  • Determine if the integral converges or diverges and explain why

  • The integral is improper because both of the bounds are infinite

  • The integral converges because the limit is finite

<ul><li><p>The integral is improper because both of the bounds are infinite</p></li><li><p>The integral converges because the limit is finite</p></li></ul><p></p>
31
New cards
<ul><li><p>Evaluate the integral</p></li><li><p>Explain why the integral is improper </p></li><li><p>Determine if the integral converges or diverges and explain why</p></li></ul><p></p>
  • Evaluate the integral

  • Explain why the integral is improper

  • Determine if the integral converges or diverges and explain why

  • The integral is improper because one of the bounds is infinite

  • The integral converges because the limit is finite

<ul><li><p>The integral is improper because one of the bounds is infinite</p></li><li><p>The integral converges because the limit is finite</p></li></ul><p></p>
32
New cards
<ul><li><p>Evaluate the integral</p></li><li><p>Explain why the integral is improper </p></li><li><p>Determine if the integral converges or diverges and explain why</p></li></ul><p></p>
  • Evaluate the integral

  • Explain why the integral is improper

  • Determine if the integral converges or diverges and explain why

  • The integral is improper because there is a discontinuity x=1

  • The integral converges because the limit is finite

<ul><li><p>The integral is improper because there is a discontinuity x=1 </p></li><li><p>The integral converges because the limit is finite</p></li></ul><p></p>
33
New cards
<ul><li><p>Evaluate the integral</p></li><li><p>Explain why the integral is improper </p></li><li><p>Determine if the integral converges or diverges and explain why</p></li></ul><p></p>
  • Evaluate the integral

  • Explain why the integral is improper

  • Determine if the integral converges or diverges and explain why

  • The integral is improper because there is a discontinuity x=1

  • The integral converges because the limit is finite

<ul><li><p>The integral is improper because there is a discontinuity x=1 </p></li><li><p>The integral converges because the limit is finite</p></li></ul><p></p>
34
New cards
<ul><li><p>Evaluate the integral</p></li><li><p>Explain why the integral is improper </p></li><li><p>Determine if the integral converges or diverges and explain why</p></li></ul><p></p>
  • Evaluate the integral

  • Explain why the integral is improper

  • Determine if the integral converges or diverges and explain why

  • The integral is improper because one of the bounds is infinite

  • The integral converges because the limit is finite

<ul><li><p>The integral is improper because one of the bounds is infinite</p></li><li><p>The integral converges because the limit is finite</p></li></ul><p></p>
35
New cards
<ul><li><p>Evaluate the integral</p></li><li><p>Explain why the integral is improper</p></li><li><p>Determine if the integral converges or diverges and explain why</p></li></ul><p></p>
  • Evaluate the integral

  • Explain why the integral is improper

  • Determine if the integral converges or diverges and explain why

  • The integral is improper because one of the bounds is infinite

  • The integral converges because the limit is finite

<ul><li><p>The integral is improper because one of the bounds is infinite</p></li><li><p>The integral converges because the limit is finite</p></li></ul><p></p>
36
New cards
<ul><li><p>Evaluate the integral</p></li><li><p>Explain why the integral is improper </p></li><li><p>Determine if the integral converges or diverges and explain why</p></li></ul><p></p>
  • Evaluate the integral

  • Explain why the integral is improper

  • Determine if the integral converges or diverges and explain why

  • The integral is improper because one of the bounds is infinite

  • The integral converges because the limit is finite

<ul><li><p>The integral is improper because one of the bounds is infinite</p></li><li><p>The integral converges because the limit is finite</p></li></ul><p></p>
37
New cards
<ul><li><p>Evaluate the integral</p></li><li><p>Explain why the integral is improper</p></li><li><p>Determine if the integral converges or diverges and explain why</p></li></ul><p></p>
  • Evaluate the integral

  • Explain why the integral is improper

  • Determine if the integral converges or diverges and explain why

  • The integral is improper because there is a discontinuity at x=2

  • The integral diverges because the limit is infinite

<ul><li><p>The integral is improper because there is a discontinuity at x=2</p></li><li><p>The integral diverges because the limit is infinite</p></li></ul><p></p>
38
New cards
<ul><li><p>Evaluate the integral</p></li><li><p>Explain why the integral is improper</p></li><li><p>Determine if the integral converges or diverges and explain why</p></li></ul><p></p>
  • Evaluate the integral

  • Explain why the integral is improper

  • Determine if the integral converges or diverges and explain why

  • The integral is improper because there is a discontinuity at x=0

  • The integral diverges because the limit is infinite

<ul><li><p>The integral is improper because there is a discontinuity at x=0</p></li><li><p>The integral diverges because the limit is infinite</p></li></ul><p></p>
39
New cards
<ul><li><p>Evaluate the integral</p></li><li><p>Explain why the integral is improper</p></li><li><p>Determine if the integral converges or diverges and explain why</p></li></ul><p></p>
  • Evaluate the integral

  • Explain why the integral is improper

  • Determine if the integral converges or diverges and explain why

  • The integral is improper because there is a discontinuity at x=1

  • The integral diverges because the limit is infinite

<ul><li><p>The integral is improper because there is a discontinuity at x=1</p></li><li><p>The integral diverges because the limit is infinite</p></li></ul><p></p>
40
New cards

*remember that when when you have to split apart the integral because there is a discontinutiy that is inbetween the bounds, the answer will always be divergent

41
New cards
<p>Use the Comparison Theorem to determine if the improper integral converges or diverges (do not evaluate the integral)</p>

Use the Comparison Theorem to determine if the improper integral converges or diverges (do not evaluate the integral)

knowt flashcard image
42
New cards
<p>Use the Comparison Theorem to determine if the improper integral converges or diverges (do not evaluate the integral)</p>

Use the Comparison Theorem to determine if the improper integral converges or diverges (do not evaluate the integral)

knowt flashcard image
43
New cards
<p>Use the Comparison Theorem to determine if the improper integral converges or diverges (do not evaluate the integral)</p>

Use the Comparison Theorem to determine if the improper integral converges or diverges (do not evaluate the integral)

knowt flashcard image
44
New cards
<p>Use the Comparison Theorem to determine if the improper integral converges or diverges (do not evaluate the integral)</p>

Use the Comparison Theorem to determine if the improper integral converges or diverges (do not evaluate the integral)

knowt flashcard image
45
New cards
<p>Use the Comparison Theorem to determine if the improper integral converges or diverges (do not evaluate the integral)</p>

Use the Comparison Theorem to determine if the improper integral converges or diverges (do not evaluate the integral)

knowt flashcard image
46
New cards
term image
knowt flashcard image
47
New cards
term image
knowt flashcard image
48
New cards
term image
knowt flashcard image
49
New cards
term image
knowt flashcard image
50
New cards
<p></p>

knowt flashcard image
51
New cards
<p>Decompose the rational function into partial fractions</p>

Decompose the rational function into partial fractions

knowt flashcard image
52
New cards
<p>Evaluate the integral</p>

Evaluate the integral

knowt flashcard image
53
New cards
<p>Evaluate the integral</p>

Evaluate the integral

knowt flashcard image
54
New cards
<p>Evaluate the integral</p>

Evaluate the integral

knowt flashcard image
55
New cards
<p>Evaluate the integral</p>

Evaluate the integral

knowt flashcard image
56
New cards
<p>Evaluate the integral</p>

Evaluate the integral

knowt flashcard image
57
New cards
<p>Evaluate the integral</p>

Evaluate the integral

knowt flashcard image
58
New cards
<p>Evaluate the integral </p>

Evaluate the integral

knowt flashcard image
59
New cards
<p><span>Eliminate the parameter to find a Cartesian equation of the curve.</span></p>

Eliminate the parameter to find a Cartesian equation of the curve.

knowt flashcard image
60
New cards
<p><span>Eliminate the parameter to find a Cartesian equation of the curve.</span></p>

Eliminate the parameter to find a Cartesian equation of the curve.

knowt flashcard image
61
New cards
<p><span>Eliminate the parameter to find a Cartesian equation of the curve.</span></p>

Eliminate the parameter to find a Cartesian equation of the curve.

knowt flashcard image
62
New cards
<p><span>Eliminate the parameter to find a Cartesian equation of the curve.</span></p>

Eliminate the parameter to find a Cartesian equation of the curve.

knowt flashcard image
63
New cards
<p><span>Eliminate the parameter to find a Cartesian equation of the curve.</span></p>

Eliminate the parameter to find a Cartesian equation of the curve.

knowt flashcard image
64
New cards
<p><span>Eliminate the parameter to find a Cartesian equation of the curve.</span></p>

Eliminate the parameter to find a Cartesian equation of the curve.

knowt flashcard image
65
New cards
<p><span>Eliminate the parameter to find a Cartesian equation of the curve.</span></p>

Eliminate the parameter to find a Cartesian equation of the curve.

knowt flashcard image
66
New cards
<p>a. Find dy/dx and d²y/dx²</p><p>b. Find the values of t where the tangent is horizontal or vertical</p>

a. Find dy/dx and d²y/dx²

b. Find the values of t where the tangent is horizontal or vertical

knowt flashcard image
67
New cards
term image
knowt flashcard image
68
New cards
term image
knowt flashcard image
69
New cards
term image
knowt flashcard image
70
New cards
term image
knowt flashcard image
71
New cards
term image
knowt flashcard image
72
New cards
term image
knowt flashcard image