Parent rational function
f(x) = 1/x
Piecewise function
Arithmetic function
aₙ = d(n - 1) + a₁
Geometric function
aₙ = a₁ ⋅ (rⁿ ⁻ ¹)
Finding an exponential function w/ two points
y₂ = y₁ ⋅ b⁽ˣ₂ ⁻ ʸ₁⁾
Logarithmic function
y = logbx
Circumference of a circle
2πr
Arc length
r(θ)
Cosine function
f(θ) = acos(bθ ± c)+ k
Sine function
f(θ) = asin(bθ ± c)+ k
Period of sine/cosine functions
2π/b
Tangent function
f(θ) = atan(bθ ± c)+ k
Cotangent function
f(θ) = acot(bθ ± c)+ k
Secant
sec = 1/cos
Cosecant
1/sin
Cotangent
1/tan
cos/sin
sin(α ± β)
sin(α ± β) = sinαcosβ ± sinβcosα
cos(α ± β)
(α ± β) = cosαcosβ ∓ sinαsinβ
1
sin²θ + cos²θ = 1
sec²θ
1 + tan²θ = sec²θ
csc²θ
1 + cot²θ = csc²θ
Polar to rectangular
x = r ⋅ cosθ
y = r ⋅ sinθ
Rectangular to polar
r = √a²+b²
θ = tan⁻¹(y/x)
Complex rectangular
a + bi
Complex polar
r(cosθ + isinθ)
Limaçons
r = a ± bcosθ
r = a ± bsinθ
Circles
r = acosθ
r = asinθ
Roses
r = acos(nθ)
r = asin(nθ)
ROC of polar functions
(r2 - r1) / (θ2 - θ1)