Review

0.0(0)
studied byStudied by 4 people
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/28

flashcard set

Earn XP

Description and Tags

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

29 Terms

1
New cards

Parent rational function

f(x) = 1/x

<p>f(x) = 1/x</p>
2
New cards

Piecewise function

knowt flashcard image
3
New cards

Arithmetic function

aₙ = d(n - 1) + a₁

<p>aₙ = d(n - 1) + a₁</p>
4
New cards

Geometric function

aₙ = a₁ ⋅ (rⁿ ⁻ ¹)

<p>aₙ = a₁ ⋅ (rⁿ ⁻ ¹)</p>
5
New cards

Finding an exponential function w/ two points

y₂ = y₁ ⋅ b⁽ˣ₂ ⁻ ʸ₁⁾

6
New cards

Logarithmic function

y = logbx

<p>y = log<sub>b</sub>x</p>
7
New cards

Circumference of a circle

2πr

8
New cards

Arc length

r(θ)

9
New cards

Cosine function

f(θ) = acos(bθ ± c)+ k

<p>f(θ) = <em>a</em>cos(<em>b</em>θ ± <em>c</em>)+ <em>k</em></p>
10
New cards

Sine function

f(θ) = asin(bθ ± c)+ k

<p>f(θ) = <em>a</em>sin(<em>b</em>θ ± <em>c</em>)+ <em>k</em></p>
11
New cards

Period of sine/cosine functions

2π/b

12
New cards

Tangent function

f(θ) = atan(bθ ± c)+ k

<p>f(θ) = <em>a</em>tan(<em>b</em>θ ± <em>c</em>)+ <em>k</em></p>
13
New cards

Cotangent function

f(θ) = acot(bθ ± c)+ k

<p>f(θ) = <em>a</em>cot(<em>b</em>θ ± <em>c</em>)+ <em>k</em></p>
14
New cards

Secant

sec = 1/cos

15
New cards

Cosecant

1/sin

16
New cards

Cotangent

1/tan


cos/sin

17
New cards

sin(α ± β)

sin(α ± β) = sinαcosβ ± sinβcosα

18
New cards

cos(α ± β)

(α ± β) = cosαcosβ ∓ sinαsinβ

19
New cards

1

sin²θ + cos²θ = 1

20
New cards

sec²θ

1 + tan²θ = sec²θ

21
New cards

csc²θ

1 + cot²θ = csc²θ

22
New cards

Polar to rectangular

x = r ⋅ cosθ


y = r ⋅ sinθ

23
New cards

Rectangular to polar

r = √a²+b²


θ = tan⁻¹(y/x)

24
New cards

Complex rectangular

a + bi

25
New cards

Complex polar

r(cosθ + isinθ)

26
New cards

Limaçons

r = a ± bcosθ


r = a ± bsinθ

<p>r = <em>a</em> ± <em>b</em>cosθ</p><hr><p>r = <em>a</em> ± <em>b</em>sinθ</p>
27
New cards

Circles

r = acosθ


r = asinθ

28
New cards

Roses

r = acos(nθ)


r = asin(nθ)

<p>r = <em>a</em>cos(<em>n</em>θ)</p><hr><p>r = <em>a</em>sin(<em>n</em>θ)</p>
29
New cards

ROC of polar functions

(r2 - r1) / (θ2 - θ1)