Math 2270 Calc 3
v/||v||
Unit Vector
√(x² + y² + z²)
Magnitude
<a+x, b+y, c+z>
v + w
<a-x, b-y, c-z>
v - w
ax + by + cz
v · w Dot Product
||v||²
v · v
||v||||w||cos(θ)
v · w angle
w((v · w)/(||w||²))
projw(v)
v((v · w)/(||v||²))
projv(w)
i j k
v1 v2 v3
w1 w2 w3
v × w cross product
||v||||w||sin(θ)
||v × w||
u · (v × w)
Area of a Parallelapiped
x(t) = x0 + ta,
y(t) = y0 + tb,
z(t) = z0 + tc
Parametric Equations
t = (x-x0)/a = (y-y0)/b = (z-z0)/c
Symmetric Equations
(||v × AC||)/||v||
Distance of a point to a line
|n · AC| / ||n||
Distance of a point to a plane
A vector orthogonal to the plane
ax + by + cz: <a,b,c>
OR
u × v
Normal Vector
Normal Vector: <a,b,c>
Point: (x0,y0,z0)
a(x-x0) + b(y-y0) + c(z-z0) = 0
Plane Equation
x = rcos(θ)
Polar Coordinates: x =
y = rsin(θ)
Polar Coordinates: y =
r² = x² + y²
r = √(x²+y²)
Polar Coordinates: r =
tan(θ) = y/x
θ = arctan(y/x)
Polar Coordinates: θ =
r = Ρsinφ
Spherical Coordinates: r =
x = rcosθ = Ρsinφcosθ
Spherical Coordinates: x =
y = rsinθ = Ρsinφsinθ
Spherical Coordinates: y =
z = Ρcosφ
Spherical Coordinates: z =
Ρ = √(x²+y²+z²)
Spherical Coordinates: Ρ =
φ = arccos(z/P)
Spherical Coordinates: φ =
θ = arctan(y/x)
Spherical Coordinates: θ =
s(t) = ∫(0,t)||v(u)||du
Arc Length
||v(t)|| (parameterized)
Speed
v(t)/||v(t)|| (parameterized)
Unit Tangent Vector
rx = <1,0,δf/δx(a,b)>
rx =
ry = <0,1,δf/δy(a,b)>
ry =
r = rx × ry = <-δf/δx(a,b),-δf/δy(a,b),1>
r =
<x-a, y-b, z-f(a,b)> · <-δf/δx(a,b),-δf/δy(a,b),1>
Tangent Plane
f(a,b) + δf/δx(a,b)(x-a) + δf/δy(a,b)(y-b)
Tangent Plane: z =
df/dt = (δf/δx * dx/dt) + (δf/δy * dy/dt) + (δf/δz * dz/dt) +
df/dt =
⛛f(x,y) = <δf/δx(x,y), δf/δy(x,y)>
Gradient ⛛f(x,y) =
Df(a,b)v = v/||v|| · ⛛f(x,y)
Directional Derivative Df(a,b)v Gradient
(1/||v||)Df(a,b)v
Directional Derivative Df(a,b)(v/||v||)
⛛f(x,y) = 0, solve for x,y,z.
Critical Points
⛛f(a,b)
Normal Vector at a Point (a,b)
| δ²f/δx²(a,b) δ²f/δxδy(a,b) |
| δ²f/δyδx(a,b) δ²f/δy²(a,b) |
det(H(a,b)(f)) = δ²f/δx²(a,b) * δ²f/δy²(a,b) - (δ²f/δxδy(a,b))²
Hessian Matrix
Local Min
Hessian: Det(H(a,b)(f)) > 0 & δ²f/δx²(a,b) > 0
Local Max
Hessian: Det(H(a,b)(f)) > 0 & δ²f/δx²(a,b) < 0
Saddle Point
Hessian: Det(H(a,b)(f)) < 0
Inconclusive
Hessian: Det(H(a,b)(f)) = 0
⛛f(x,y,z) = λ⛛g(x,y,z)
Legrange
⛛f(x,y,z) = <a,b,c>
a(x-x0) + b(y-y0) + c(z-0)
Tangent Plane at a point