CH 6 (Part 1) - Viruses, Viroids, & Prions

0.0(0)
studied byStudied by 0 people
0.0(0)
full-widthCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/33

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

34 Terms

1
New cards

What domains are susceptile to viruses?

Cell types in ALL taxonomic domains are susceptible to virus infection.

2
New cards

Discovery of viruses

(Ivanovsky & Beijerinck) tobacco mosaic virus; “non-filterable particles”

  • tobacco plant infection by virus - found virus in filtrate (tiny - 20 nm)

3
New cards
<p>Virus size range</p>

Virus size range

20 to 900 nm

(0.02 to 0.90 um)

<p>20 to 900 nm</p><p>(0.02 to 0.90 um)</p>
4
New cards
<p>Viruses</p>

Viruses

acellular; they are obligate (they must do it) intracellular parasites. ALL viruses consist of nucleic acid (DNA/RNA) in a protein shell ⟶ a capsid; comprised of repeating protein subunits, capsomeres.

<p><strong><u>acellular</u></strong>; they are <strong><u>obligate</u></strong> (they must do it) i<strong><u>ntracellular parasites</u></strong>. <span style="color: yellow;"><strong>ALL</strong></span> viruses consist of <span style="color: yellow;"><strong><u>nucleic acid (DNA/RNA) </u></strong></span><strong><u>in a </u></strong><span style="color: yellow;"><strong><u>protein shell ⟶ a capsid</u></strong></span>; comprised of repeating protein subunits, <strong><u>capsomeres</u></strong>.</p><p></p>
5
New cards
<p>Process common to ALL VIRUSES but <strong><u>can have variations</u></strong></p>

Process common to ALL VIRUSES but can have variations

knowt flashcard image
6
New cards

What is needed from the host?

  • DNA/RNA polymerase (can vary based on DNA/RNA virus)

  • Ribosomes

  • tRNA

  • Nucleotides (*varies)

  • Other: viruses lack a metabolism; rely on host

7
New cards

host range

Each species of virus infects a particular group (range) of host species

  • Broad: rabies virus

  • Narrow: HIV only infects humans

8
New cards

trophism

Animal viruses ⟶ tissue specificity

  • how many types of cells in a host species can be infected?

  • Broad: Ebola

  • Narrow: HIV (infects T-helper cells)

  • based on: glycoproteins or capsid proteins on its surface recognize those of the host cells.

9
New cards
<p>Symmetrical viruses</p>

Symmetrical viruses

icosahedral or filamentous capsid

  • geometric pattern

<p>icosahedral or filamentous capsid</p><ul><li><p>geometric pattern</p></li></ul><p></p>
10
New cards

Simplicity of capsid structure

minimizes the number of genes

11
New cards
<p>Enveloped viruses</p>

Enveloped viruses

an envelope surrounds the capsid; derived from the host membrane

  • “Naked” viruses LACK envelopes

<p>an <strong><u>envelope</u></strong> surrounds the capsid; <strong><u>derived from the host membrane</u></strong></p><ul><li><p> <strong><u>“Naked” viruses</u></strong> <strong><u>LACK envelopes</u></strong></p></li></ul><p></p>
12
New cards
<p>Naked viruses</p>

Naked viruses

lack an envelope

<p>lack an envelope</p>
13
New cards

Glycoprotein spikes

Function in host recognition & attachment or other function

  • BOTH naked and enveloped can have spikes

14
New cards

Filamentous viruses

The capsid ⟶ long tube of protein,with genome coiled inside; vary in length

Ex: Ebola, M13, TMV

15
New cards
<p>Tailed viruses</p>

Tailed viruses

addition of a genome delivery device tothe icosahedral head.

  • Ex: T4 bacteriophages: helical “neck” & tail fibers

  • complex viruses - many structures

16
New cards
<p>Asymmetrical viruses</p>

Asymmetrical viruses

lack capsid symmetry —→ uneven shape

  • influenza viruses (as well as others)

<p>lack capsid symmetry —→ uneven shape</p><ul><li><p>influenza viruses (as well as others)</p></li></ul><p></p>
17
New cards
<p>Coronavirus</p>

Coronavirus

  • enveloped viruses

  • nucleocaspid proteins - protects genome (stuck to genome)

18
New cards

Viral Genomes

  • Small viruses: ≤ 10 genes

  • Large viruses: > 100 genes

  • average virus has 11,000 nucleotides

19
New cards
<p>Zika Virus Genome</p>

Zika Virus Genome

  • Non-segmented, single-stranded (+) RNA genome

  • 10,794 ntbases long

<ul><li><p>Non-segmented, single-stranded (+) RNA genome</p></li><li><p>10,794 ntbases long</p></li></ul><p></p>
20
New cards
<p>Influenza Virus Genome</p>

Influenza Virus Genome

  • Segmented, single-stranded (-) RNA genome; 8 segments

  • 11 proteins encoded;13,500 ntbases total

  • mutation and reassortment of segmented genomes ⟶ lead to variants that are infectious in humans

<ul><li><p>Segmented, single-stranded (-) RNA genome; 8 segments</p></li><li><p>11 proteins encoded;13,500 ntbases total</p></li><li><p><strong><u>mutation and reassortment of segmented genomes ⟶ lead to variants that are infectious in humans</u></strong></p></li></ul><p></p>
21
New cards
<p>Viroids</p>

Viroids

are RNA molecules without a capsid surrounding the RNA; infect plants. They are not viruses.

  • Are replicated by host RNA polymerase

  • The RNA does not encode for proteins; 300-400 nucleotides long

  • Some have catalytic ability.

EFFECT: alter gene expression in affected plant

<p>are <strong><u>RNA molecules</u></strong> <strong><u>without a capsid</u></strong> surrounding the RNA; infect plants. They are<strong><u> not viruses</u></strong>.</p><ul><li><p>Are replicated by host RNA polymerase</p></li><li><p>The RNA <strong><u>does not</u></strong> encode for proteins; 300-400 nucleotides long</p></li><li><p>Some have <strong><u>catalytic ability</u></strong>.</p></li></ul><p><strong>EFFECT: <u>alter gene expression in affected plant</u></strong></p><p></p>
22
New cards
<p>Prions</p>

Prions

proteins that infect animals; they have NO nucleic acid component.

  • Cause degenerative brain diseases; transmitted in food, prepared from infected animals

  • misfolded form of a normal brain cell protein

  • converts a normal protein into the prion version, creating a chain reaction; produces harmful aggregates in the cell. (VERY slow process)

  • Are highly resistant to physical/chemical agents

<p><strong><u>proteins that infect animals</u></strong>; they have <strong><u>NO nucleic acid</u></strong> component.</p><ul><li><p>Cause degenerative brain diseases; transmitted in food, prepared from infected animals</p></li><li><p><strong><u>misfolded form of a normal brain cell protein</u></strong></p></li><li><p><strong><u>converts a normal protein into the prion version</u></strong>, creating a <strong><u>chain reaction</u></strong>; produces harmful aggregates in the cell. (VERY slow process)</p></li><li><p>Are <strong><u>highly resistant</u></strong> to physical/chemical agents</p></li></ul><p></p>
23
New cards

Important roles in ecosystems (Viral Ecology)

limit host population densities; recycle nutrients; increase host diversity; gene transfer

  • Marine Ecosystems: cycling of nutrients

24
New cards
<p>viral shunt (Viral Ecology)</p>

viral shunt (Viral Ecology)

viral infection of hosts convert them to detritus, rich in organic & inorganic molecules.

  • marine ecosystems

<p>viral infection of hosts convert them to detritus, rich in organic &amp; inorganic molecules.</p><ul><li><p>marine ecosystems</p></li></ul><p></p>
25
New cards

Weird viruses

  • Very large viruses

  • can have some metabolism - like a normal cell (but not always

  • virus that can infect other viruses

26
New cards

International Committee on Taxonomy of Viruses; based on:

Genome

Capsid symmetry

Envelope

Host range

Virion size

27
New cards

1971: Baltimore classification

genome (RNA or DNA) & route used to express messenger RNA (mRNA)

  • + RNA = mRNA = “sense” RNA —→ codes for protein (final step)

28
New cards

Group I: ds DNA

± DNA —→ host RNA polymerase —→ + mRNA

  • use host DNA polymerase to make copies of genome

<p><span style="color: blue;"><strong><span>± DNA</span></strong></span><span> —→ </span><u><span>host&nbsp;</span></u><span>RNA polymerase —→ </span><span style="color: red;"><strong><span>+ mRNA</span></strong></span></p><ul><li><p><span style="color: rgb(255, 254, 254);">use<strong> <u>host</u><span> DNA polymerase </span></strong><span>to make copies of genome</span></span></p></li></ul><p></p>
29
New cards

Group II: + ss DNA

+ DNA —→ host DNA polymerase —→ ± DNA —→

host RNA polymerase —→ + mRNA

  • use host DNA polymerase to make copies of genome

<p><span style="color: blue;"><strong><span>+ DNA</span></strong></span> —→ <u>host</u> DNA polymerase —→&nbsp;<span style="color: blue;"><strong><span>± DNA </span></strong></span><span style="color: rgb(255, 255, 255);"><span>—→</span></span></p><p><span style="color: rgb(255, 255, 255);"><u><span>host</span></u><span> RNA polymerase —→</span></span><span style="color: blue;"><strong><span>&nbsp;</span></strong></span><span style="color: red;"><strong><span>+ mRNA</span></strong></span></p><ul><li><p><span style="color: rgb(255, 254, 254);"><span>use</span><strong><span> </span><u><span>host</span></u><span> DNA polymerase </span></strong><span>to make copies of genome</span></span></p></li></ul><p></p>
30
New cards

RDRP

RNA-Dependent RNA Polymerase

  • VIRAL enzyme, not found in cells

31
New cards

Group III: ds RNA

± RNA —→ viral RDRP —→ + mRNA

  • use RDRP to make copies of genome from

<p><span style="color: yellow;"><strong><span>± RNA</span></strong></span><span style="color: blue;"><strong><span> </span></strong></span><span style="color: rgb(254, 254, 254);"><span>—→ </span><u><span>viral</span></u><span> RDRP —→ </span></span><span style="color: red;"><strong><span>+ mRNA</span></strong></span></p><ul><li><p>use <strong><u>RDRP</u></strong> to make copies of genome from</p></li></ul><p></p>
32
New cards

Group IV: + ss RNA

+ ssRNA —→ viral RDRP —→ - RNA —→ viral RDRP —→

+ mRNA

  • more efficient to have >1 copy of RNA so to make a bunch, you need to make a template ( - RNA )

<p><span style="color: yellow;"><strong>+ ssRNA</strong></span> —→ <u>viral</u> RDRP —→ <span style="color: yellow;"><strong>- RNA</strong></span>&nbsp;—→ <u>viral</u> RDRP —→ </p><p><span style="color: red;"><strong>+ mRNA</strong></span></p><ul><li><p>more efficient to have <strong><u>&gt;1 copy</u></strong> of <strong>RNA</strong> so to make a bunch, you need to make a template ( <span style="color: yellow;"><strong>- RNA</strong></span> )</p></li></ul><p></p>
33
New cards

Group V: - ss RNA

- RNA —→ viral RDRP —→ + mRNA

  • use RDRP to make copies of genom

<p><span style="color: yellow;"><strong><span>- RNA</span></strong></span> —→ <u>viral</u> RDRP —→ <span style="color: red;"><strong><span>+ mRNA</span></strong></span></p><ul><li><p>use <strong><u>RDRP</u></strong> to make copies of genom</p></li></ul><p></p>
34
New cards

Group VI: Retroviruses

+ RNA —→ RT —→ - DNA —→ RT —→ ± DNA —→ host RNA polymerase —→ + mRNA

  • need double strand DNA to integrate into host chromosome

  • NOT lysogenic b/c they integrate into host chromosome and start replicating actively

<p><span style="color: yellow;"><span>+ RNA</span></span> —→ RT —→<span style="color: blue;"><strong><span> - DNA</span></strong></span> —→ RT —→ <span style="color: blue;"><strong><span>± DNA </span></strong></span>—→ <u>host</u> RNA polymerase —→ <span style="color: red;"><strong><span>+ mRNA</span></strong></span></p><ul><li><p>need double strand DNA to <strong><u>integrate</u></strong> into host chromosome</p></li><li><p><strong><u>NOT lysogenic</u></strong> b/c they <strong><u>integrate into host chromosome and start replicating actively</u></strong></p></li></ul><p></p>