1/8
Vocabulary flashcards covering core concepts from Form, Imaginary numbers, and Performing Operations for complex numbers.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Complex numbers
Numbers of the form a + bi, where a and b are real numbers and i^2 = -1.
Imaginary unit i
The unit with i^2 = -1; i is the square root of -1.
Real part
The 'a' in a + bi; the real component of a complex number.
Imaginary part
The 'bi' portion in a + bi; the imaginary component; b is the imaginary coefficient.
Addition and subtraction of complex numbers
Add or subtract by combining real parts together and imaginary parts together.
FOIL method
First-Outer-Inner-Last method used to multiply complex numbers, applying i^2 = -1 to simplify.
i^2 = -1
Rule that replaces i^2 with -1 in products involving i.
Division by a complex number
To divide by a complex number, multiply numerator and denominator by the conjugate of the denominator to rationalize.
Conjugate of a complex number
For a + bi, the conjugate is a - bi; used to rationalize division and eliminate i from the denominator.