1/22
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
f(x) = √x
f’(x) = 1 / 2√x
f’(x) = 1 / 2sqrt(x)
f(x) = 3√x
f’(x) = 3 / 2√x
f’(x) = 3 / 2sqrt(x)
f(x) = x²
f’(x) = 2x
f(x) = 1/√x
f’(x) = -1 / 2√x³
f’(x) = -1 / 2sqrt(x3)
f(x) = 2/x
f’(x) = -2/x²
f(x) = sin(x)
f’(x) = cos(x)
f(x) = cos(x)
f’(x) = -sin(x)
f(x) = ex
f’(x) = ex
f(x) = ln(x)
f’(x) = 1 / x
Derivative Power Rule
d/dx[f(x)g(x)]
f’(x)g(x) + g’(x)f(x)
Derivative Quotient Rule
d/dx[f(x) / g(x)]
f’(x)g(x) - g’(x)f(x) / g(x)²
d/dx[tan(x)]
sec²(x)
d/dx[cot(x)]
-csc²(x)
d/dx[sec(x)]
d/dx[1/cos(x)]
tan(x) * sec(x)
d/dx[csc(x)]
d/dx[1/sin(x)]
-cot(x) * csc(x)
ln(1)
0
f(x) = 1/2x
f’(x) = -1/2x²
sin²+cos²
1
∫cos(x)dx
sin(x)
∫sin(x)dx
-cos(x)
∫x²dx
x³/3
Area between curves equation
A = b∫a[g(x)-f(x)]dx
Volume of a solid equation
A = π b∫a[g(x)-f(x)]dx