1/30
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
|---|
No study sessions yet.
Laplace transform of f(t) = 1
1/s
Laplace transform of f(t) = t
1/(s²)
Laplace transform of f(t) = t^n
n!/(s^(n+1)); n > 0
Laplace transform of f(t) = sin(kt)
k/(s²+k²)
Laplace transform of f(t) = cos(kt)
s/(s²+k²)
Laplace transform of f(t) = e^(at)
1/(s-a)
Laplace transform of f(t) = sinh(kt)
k/(s²-k²)
Laplace transform of f(t) = cosh(kt)
s/(s²-k²)
Laplace transform of y’(t)
sY(s) - y(0)
Laplace transform of y’’(t)
s²Y(s) - sy(0) - y’(0)
Laplace transform of y^(n)(t)
s^nY(s) - s^(n-1)y(0)-….- y^(n-1)(0); n > 0
Laplace transform of f(t) = e^(at)*f(t)
F(s-a)
Laplace transform of f(t) = u(t-a)
(e^-(as))/s
Laplace transform of f(t) = f(t-a)u(t-a)
(e^-(as))F(s)
Laplace transform of f(t) = g(t)u(t-a)
e^-(as)(L{g(t+a)}
Laplace transform of f(t) = t^(n)(f(t))
(-1)^n(d^n/ds^n)F(s)
Laplace transform of f(t) = f*g = integral from 0 to t of f(tau) times g(t-tau) d(Tau)
F(s)G(s)
Laplace transform of f(t) = integral of f(tau) d(tau) from 0 to t
F(s)/s
Laplace transform of f(t) = (e^(at))cos(bt)
(s-a)/((s²-a²)+b²)
Laplace transform of f(t)= (e^(at)sin(bt))
b/((s²-a²)+b²)
Laplace transform of f(t) = (t^n)(e^at)
n!/(s-a)^n+1
Laplace transform of f(t) = f(ct)
(1/c)L{f(s/c)}
Laplace transform of f(t) = f^n(t)
(s^n)L{f(t)}-s^(n-1)f(0)-…-sf^(n-2)(0)-f^(n-1)(0)
Partial fraction form given this term in the denominator: (s+a)
A/(s+a)
Partial fraction form given this term in the denominator: (s+a)²
(A/(s+a))+(B/(s+a)²)
Partial fraction form given this term in the denominator: (s+a)³
(A/(s+a)) + (B/(s+a)²) + (C/(s+a)³)
Partial fraction form given this term in the denominator: (s² ± k²)
(As + B) / (s² ± k²)
Partial fraction form given this term in the denominator: (s² ± k²)²
((As + B) / (s² ± k²)) + ((Cs + D) / (s² ± k²))
Partial fraction form given this term in the denominator: (s² + bs+c) irreducible
(As + B) / (s² + bs + c)
Partial fraction form given this term in the denominator: (s²+bs+c)²
((As + B) / (s²+bs+c)) + ((Cs + D) / (s²+bs+c)²)
How to complete the square when given irreducible quadratics
Special form: (s ± a)²±k², halve b, square it, to create the new quadratic, and subtract it from c.
Ex: s² + bs + c = (s + (b/2))² + c - (b/2)²