Precalc 8.1-8.3: Sequences and Series

studied byStudied by 3 people
0.0(0)
learn
LearnA personalized and smart learning plan
exam
Practice TestTake a test on your terms and definitions
spaced repetition
Spaced RepetitionScientifically backed study method
heart puzzle
Matching GameHow quick can you match all your cards?
flashcards
FlashcardsStudy terms and definitions
Get a hint
Hint

nth term of an arithmetic sequence

1 / 24

flashcard set

Earn XP

Description and Tags

25 Terms

1

nth term of an arithmetic sequence

aₙ = a₁ + (n-1)d

New cards
2

sum of a finite arithmetic sequence

n/2(a₁ + aₙ)

New cards
3

recursion formula

aₙ = a sub (n-1) + d

New cards
4

geometric sequence formula

aₙ = a₁r^n-1

New cards
5

d =

common difference

New cards
6

r =

common ratio

New cards
7

aₙ =

nth term

New cards
8

n =

term number

New cards
9

sum of a finite geometric sequence

Sₙ = ∑n, i=1, a₁r^i-1 = a₁(1-rⁿ)/(1-r)

New cards
10

sum of an infinite geometric series

If |r| is less than 1, Sₙ = ∑∞, i=0, a₁r^i = a₁/(1-r)

New cards
11

For sums of finite geometric sequences , if the index begins at i=0, you must…

adjust the formula so the sigma becomes n=1

New cards
12

n! =

n(n-1)(n-2)…*2*1 and 0! = 1

New cards
13

∑caₙ =

c∑aₙ (c is a constant)

New cards
14

∑c (n is stop point on top of ∑)

cn

New cards
15

∑(aₙ + bₙ) =

∑aₙ + ∑bₙ

New cards
16

∑(aₙ - bₙ) =

∑aₙ - ∑bₙ

New cards
17

Write recursion formula for the sequence

15, 7, 8, -1, 9, -10…

aₙ = a sub(n-2) - a sub(n-1), n ≥ 3

New cards
18

How many terms are in ∑ 100, n=51, n

50 (do limit-start+1)

New cards
19

Number of terms in a sequence

first term - last term + 1

New cards
20

Find the sum of the integers from 40 to 80

Sₙ = 41/2(40 + 80)

Sₙ = 2460

(THERE ARE 41 TERMS FROM 40 TO 80)

New cards
21

3!8!/4!4! =

3!8x7x6x5x4!/4x3!x4!

Cancel out factorials

8x7x6x5/4

New cards
22

Formula for 2, 4, 8, 16, 32, 64

aₙ = 2ⁿ

New cards
23

How to solve annuity problems

  1. Find a₁ and r using A=P(1+r/n)^nt, a₁ is the last payment which is only compounded once, r is value inside the parentheses

  2. Set up a sum of a finite geometric sequence equation with n = total number of months compounded

New cards
24

Write the recursive and explicit formula for the sequence

11, 101, 1001, 10001…

Recursion: aₙ = 10(a sub(n-1)) -9

Explicit: aₙ = 10ⁿ +1

New cards
25

Find an expression for the nth partial sum of

aₙ = (1/n+1) - (1/n+2)

Telescoping series (only first and last terms remain)

Sₙ = (1/2-1/3) + (1/3-1/4) + … + (1/(n+1)) - (1/(n+2))

Cancel out all terms besides first and last

Sₙ = 1/2 - 1/(n+2)

Sₙ = n/(2n+4)

New cards

Explore top notes

note Note
studied byStudied by 20 people
796 days ago
5.0(1)
note Note
studied byStudied by 28 people
832 days ago
5.0(1)
note Note
studied byStudied by 6 people
850 days ago
5.0(1)
note Note
studied byStudied by 12 people
717 days ago
5.0(1)
note Note
studied byStudied by 5 people
777 days ago
5.0(1)
note Note
studied byStudied by 6 people
700 days ago
5.0(1)
note Note
studied byStudied by 162 people
612 days ago
5.0(1)
note Note
studied byStudied by 16196 people
645 days ago
4.8(104)

Explore top flashcards

flashcards Flashcard (61)
studied byStudied by 33 people
15 days ago
5.0(1)
flashcards Flashcard (130)
studied byStudied by 6 people
851 days ago
5.0(1)
flashcards Flashcard (20)
studied byStudied by 54 people
370 days ago
5.0(1)
flashcards Flashcard (30)
studied byStudied by 19 people
91 days ago
5.0(1)
flashcards Flashcard (51)
studied byStudied by 214 people
391 days ago
4.0(1)
flashcards Flashcard (24)
studied byStudied by 1 person
92 days ago
5.0(1)
flashcards Flashcard (21)
studied byStudied by 81 people
466 days ago
5.0(1)
flashcards Flashcard (65)
studied byStudied by 938 people
112 days ago
5.0(1)
robot