The citric acid cycle

0.0(0)
studied byStudied by 0 people
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/25

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

26 Terms

1
New cards

Stage 1 of cellular respiration

Organic fuel molecules such as glucose fatty acids and some amino acids are oxidized to yield 2 carbon fragments in form of acetyl- CoA

<p>Organic fuel molecules such as glucose fatty acids and some amino acids are oxidized to yield 2 carbon fragments in form of acetyl- CoA</p>
2
New cards

Stage 2 of cellular respiration

The acetyl groups are oxidized to CO2 in the citric acid cycle

Energy of the oxidation is conserved in electron carriers NADH and FADH2 by reduction

<p>The acetyl groups are oxidized to CO2 in the citric acid cycle</p><p>Energy of the oxidation is conserved in electron carriers NADH and FADH2 by reduction</p>
3
New cards

Stage 3 of cellular respiration

The reduced coenzymes are themselves oxidized giving up protons H+ and electrons

Electrons are transferred to O2 via a series of electron carrying molecules - in the respiratory chain- forming water

<p>The reduced coenzymes are themselves oxidized giving up protons H+ and electrons</p><p>Electrons are transferred to O2 via a series of electron carrying molecules - in the respiratory chain- forming water</p>
4
New cards

Pyruvate

The metabolite that links 2 central catabolic pathways- glycolysis and citric acid cycle→ a logical point of regulation that determines the rate of catabolic activity

5
New cards

Summarize what the citric acid cycle does

Oxidizes acetyl CoA to CO2 and H2O

Energy from the oxidation drives the synthesis of ATP

Conserving energy

6
New cards

Citric acid cycle is a hub if metabolism

Catabolic pathways in and anabolic out

breakdown products of many amino acids and nucleotides are intermediates in the cycle that can be fed in

7
New cards

How can the citric acid cycle be regulated?

Can be regulated by allosteric and covalent mechanisms to achieve homeostasis

8
New cards

Production of acetyl - CoA

CoA has a reactive thiol (SH) group covalent linked and critical to its role as an acyl carrier (thioester)

High standard free energies of hydrolysis→ high acyl group transfer potential

9
New cards

Pre-Reaction: Pyruvate→ acetyl CoA

Pyrivate is oxidized to acetyl CoA+ CO2

Occur in mitochondria and transported by MPC

By pyruvate dehydrogenase (PDH) complex- several cofactors involved: 3 enzymes and 5 coenzymes

Reaction:oxidative decarboxylation

Irreversible

NADH formed

<p>Pyrivate is oxidized to acetyl CoA+ CO2</p><p>Occur in mitochondria and transported by MPC</p><p>By pyruvate dehydrogenase (PDH) complex- several cofactors involved: 3 enzymes and 5 coenzymes</p><p>Reaction:oxidative decarboxylation</p><p>Irreversible</p><p>NADH formed</p>
10
New cards

PDH complex

3 enzymes- E1,2,3

5 coenzymes: TPP, CoA, FAD, NAD, lipoate

<p>3 enzymes- E1,2,3</p><p>5 coenzymes: TPP, CoA, FAD, NAD, lipoate</p><p></p>
11
New cards
<p>Reaction 1: condensation of acetyl CoA with oxaloacetate</p>

Reaction 1: condensation of acetyl CoA with oxaloacetate

1) OAA + Acetyl-CoA -> citrate + CoA

*) catalyzed by citrate synthase - induced fit-> example (conformational changes occur in substrate and enzyme- catalytic activity) dimer

*) "irreversible" step-> larger negative free energy change

<p>1)&nbsp;OAA&nbsp;+&nbsp;Acetyl-CoA&nbsp;-&gt;&nbsp;citrate&nbsp;+&nbsp;CoA</p><p>*)&nbsp;catalyzed&nbsp;by&nbsp;citrate&nbsp;synthase&nbsp;-&nbsp;induced&nbsp;fit-&gt;&nbsp;example&nbsp;(conformational&nbsp;changes&nbsp;occur&nbsp;in&nbsp;substrate&nbsp;and&nbsp;enzyme-&nbsp;catalytic&nbsp;activity) dimer</p><p>*)&nbsp;"irreversible"&nbsp;step-&gt;&nbsp;larger&nbsp;negative&nbsp;free&nbsp;energy&nbsp;change</p>
12
New cards
<p>Reaction 2: Formation of Isocitrate via cis-Aconitate</p>

Reaction 2: Formation of Isocitrate via cis-Aconitate

Reaction 2: Isomerization of citrate to iso-citrate

2 step process-> goes via an intermediate cis-Aconitate (not stable)-> isocitrate

Aconitase-> catalyzes hydroxylation from "correct" side of cis-aconitate

- acheived through a cofactor: iron-sulphur FeS complex (very unusual!)-> orients the correct addition of water (binding the substrate in correct orientation)

FeS→interactions points

<p>Reaction&nbsp;2:&nbsp;Isomerization&nbsp;of&nbsp;citrate&nbsp;to&nbsp;iso-citrate</p><p>2&nbsp;step&nbsp;process-&gt;&nbsp;goes&nbsp;via&nbsp;an&nbsp;intermediate&nbsp;cis-Aconitate&nbsp;(not&nbsp;stable)-&gt;&nbsp;isocitrate</p><p>Aconitase-&gt;&nbsp;catalyzes&nbsp;hydroxylation&nbsp;from&nbsp;"correct"&nbsp;side&nbsp;of&nbsp;cis-aconitate</p><p>-&nbsp;acheived&nbsp;through&nbsp;a&nbsp;cofactor:&nbsp;iron-sulphur&nbsp;FeS&nbsp;complex&nbsp;(very&nbsp;unusual!)-&gt;&nbsp;orients the&nbsp;correct&nbsp;addition&nbsp;of&nbsp;water&nbsp;(binding&nbsp;the&nbsp;substrate&nbsp;in&nbsp;correct&nbsp;orientation)</p><p>FeS→interactions points</p>
13
New cards

Reaction 3: Oxidation of Isocitrate to α- Ketoglutarate and CO2

Reaction 3. Oxidated decarboxylation

Isocitrate-> alfa-keto glutarate (alfaKG)

Electrons are captured on NADH + H+

CO2 is formed

ENzyme: isocitrate dehydrogenase - "irreversible" step

The middle carboxyl group is expelled

<p>Reaction&nbsp;3.&nbsp;Oxidated&nbsp;decarboxylation</p><p>Isocitrate-&gt;&nbsp;alfa-keto&nbsp;glutarate&nbsp;(alfaKG)</p><p>Electrons&nbsp;are&nbsp;captured&nbsp;on&nbsp;NADH&nbsp;+&nbsp;H+</p><p>CO2&nbsp;is&nbsp;formed</p><p>ENzyme:&nbsp;isocitrate&nbsp;dehydrogenase&nbsp;-&nbsp;"irreversible"&nbsp;step</p><p>The&nbsp;middle&nbsp;carboxyl&nbsp;group&nbsp;is&nbsp;expelled</p>
14
New cards

Reaction 4: Oxidation of α-Ketoglutarate to

Succinyl-CoA and CO2

Reaction 4. aKG-> succinyl CoA

Need CoA

*) enzyme aKG DH - similar to pyruvate DH, E3 identical between PDH and aKG DH

*) Irreversible step

<p>Reaction&nbsp;4.&nbsp;aKG-&gt;&nbsp;succinyl&nbsp;CoA</p><p>Need&nbsp;CoA</p><p>*)&nbsp;enzyme&nbsp;aKG&nbsp;DH&nbsp;-&nbsp;similar&nbsp;to&nbsp;pyruvate&nbsp;DH,&nbsp;E3&nbsp;identical&nbsp;between&nbsp;PDH&nbsp;and&nbsp;aKG&nbsp;DH</p><p>*)&nbsp;Irreversible&nbsp;step</p>
15
New cards
<p>Reaction 5: conversion of succinyl-COA to succinate</p>

Reaction 5: conversion of succinyl-COA to succinate

Reaction 5: Succinyl-CoA -> Succinate + CoA

*) Succinyl CoA synthetase (tase ending-> GTP involved instead of ATP)

- The “power helices” from the α and β subunits are positioned so their dipoles (+) point toward the negatively charged phosphate, stabilizing it electrostatically.

In this case- stabilizes a phospho-histidine

*) substrate level phosphorylation of GDP to GTP (GTP is equivalent to ATP -><-)

<p>Reaction&nbsp;5:&nbsp;Succinyl-CoA&nbsp;-&gt;&nbsp;Succinate&nbsp;+&nbsp;CoA</p><p>*)&nbsp;Succinyl&nbsp;CoA&nbsp;synthetase&nbsp;(tase&nbsp;ending-&gt;&nbsp;GTP&nbsp;involved&nbsp;instead&nbsp;of&nbsp;ATP)</p><p>-&nbsp;The <strong>“power helices”</strong> from the <strong>α and β subunits</strong> are positioned so their <strong>dipoles (+)</strong> point toward the negatively charged phosphate, stabilizing it electrostatically.</p><p>In&nbsp;this&nbsp;case-&nbsp;stabilizes&nbsp;a&nbsp;phospho-histidine</p><p>*)&nbsp;substrate&nbsp;level&nbsp;phosphorylation&nbsp;of&nbsp;GDP&nbsp;to&nbsp;GTP&nbsp;(GTP&nbsp;is&nbsp;equivalent&nbsp;to&nbsp;ATP&nbsp;-&gt;&lt;-)</p>
16
New cards

Reaction 6: Oxidation of succinate to fumarate

Reaction 6: Oxidation of succinate->fumarate

Electrons on FADH2

*) enzyme succinate dehydrogenase

- membrane protein (mitochondrial inner membrane)

Electrons from succinate-> electron transport chain

<p>Reaction&nbsp;6:&nbsp;Oxidation&nbsp;of&nbsp;succinate-&gt;fumarate</p><p>Electrons&nbsp;on&nbsp;FADH2</p><p>*)&nbsp;enzyme&nbsp;succinate&nbsp;dehydrogenase</p><p>-&nbsp;membrane&nbsp;protein&nbsp;(mitochondrial&nbsp;inner&nbsp;membrane)</p><p>Electrons&nbsp;from&nbsp;succinate-&gt;&nbsp;electron&nbsp;transport&nbsp;chain</p>
17
New cards

Reaction 7: Hydration of fumarate to malate

Fumarate-> L-Malate

Water is added

*) fumarase

- stereoselective

<p>Fumarate-&gt;&nbsp;L-Malate</p><p>Water&nbsp;is&nbsp;added</p><p>*)&nbsp;fumarase</p><p>-&nbsp;stereoselective</p>
18
New cards

Reaction 8: Oxidation of malate to OAA

Hydride transfer

*) malate dehydrogenase (DH)

Reversible-> unfavorable reaction

Mitochondrial matrix conditions deltaG=close to 0- reversible (low [OAA] in cells)→ pulling the reaction toward OAA

<p>Hydride&nbsp;transfer</p><p>*)&nbsp;malate&nbsp;dehydrogenase&nbsp;(DH)</p><p>Reversible-&gt;&nbsp;unfavorable&nbsp;reaction</p><p>Mitochondrial&nbsp;matrix&nbsp;conditions&nbsp;deltaG=close&nbsp;to&nbsp;0-&nbsp;reversible&nbsp;(low&nbsp;[OAA]&nbsp;in&nbsp;cells)→ pulling the reaction toward OAA</p>
19
New cards
<p>SUmmary CAC</p>

SUmmary CAC

OAA is regenerated at the end of the cycle

3 NADH, 1 FADH2, 1 GTP/ATP, 2 CO2 / PYRUVATE

Even though only 1 ATP is generated the cycle provides a large flow of electrons into the respirator chain via NADH and FADH2→ leads to the formation of 10 x more ATP

2 Pyruvate=1 GLUCOSE

<p>OAA is regenerated at the end of the cycle</p><p>3 NADH, 1 FADH2, 1 GTP/ATP, 2 CO2  / PYRUVATE</p><p>Even though only 1 ATP is generated the cycle provides a large flow of electrons into the respirator chain via NADH and FADH2→ leads to the formation of 10 x more ATP</p><p>2 Pyruvate=1 GLUCOSE</p>
20
New cards

Amphibolic pathway

The citric acid is an amphipholic pathway that serves in both catabolic and anabolic processes

21
New cards

The citric acid cycle is a hub of intermediary metabolism

knowt flashcard image
22
New cards

Anaplerotic reactions

REactions that regenerate TCA cycle intermediates-when intermediates like oxaloacetate, malate, or α-ketoglutarate are used for making amino acids, glucose, etc., anaplerotic reactions "refill" them

23
New cards

Most important anaplerotic reaction

Most important: carboxylation of pyruvate by HCO3- → OAA

Catalyzed by pyruvate carboxylase

Requires ATP

Acetyl CoA stimulates the reaction to occur→ if no acetyl CoA no reaction

Requires the vitamin biotin- prosthetic group of the enzyme (activate CO2)- each subunit has a biotin molecule- totally 4

<p>Most important: carboxylation of pyruvate by HCO3- → OAA</p><p>Catalyzed by pyruvate carboxylase</p><p>Requires ATP</p><p>Acetyl CoA stimulates the reaction to occur→ if no acetyl CoA no reaction</p><p>Requires the vitamin biotin- prosthetic group of the enzyme (activate CO2)- each subunit has a biotin molecule- totally 4</p>
24
New cards
<p>Regulation of citric acid cycle- PDH complex</p>

Regulation of citric acid cycle- PDH complex

PDH complex is strongly inhibited allosterically by ATP, acetyl CoA and NADH

PDH complex activity is turned off when ample fuel is available in the fatty acids and acetyl CoA, and when the c ATP is high compared to ADP and NADH higher than NAD+

Alos by P:

PDH-P -> inactive

PDH -> active

<p>PDH complex is strongly inhibited allosterically by ATP, acetyl CoA and NADH</p><p>PDH complex activity is turned off when ample fuel is available in the fatty acids and acetyl CoA, and when the c ATP is high compared to ADP and NADH higher than NAD+</p><p>Alos by P: </p><p>PDH-P&nbsp;-&gt;&nbsp;inactive</p><p>PDH&nbsp;-&gt;&nbsp;active</p>
25
New cards

Allosterically regulated enzymes:

- Allosterically regulated enzymes:

*) PDH

*) citric synthase

*) Isocitrate DH

*) aKG DH

26
New cards

Metabolons

a multienzyme complexes

Dilution weakens complexes- separates enzymes

When enzymes in a pathway physically group together, they can pass substrates directly from one to the next — this is called substrate channeling→ faster reactions, more efficient, better control