1/9
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
1/(x-1) = Σ ∞k=0 xk = 1 + x + x2 + x3 + …
1/(x-1), -1 < x < 1
1/(x2+x) = Σ ∞k=0 (-1)kx2k = 1 - x2 + x4 - x6 + …
1/(x2+x), -1 < x < 1
ex = Σ ∞k=0 xk/k! = 1 + x + x2/2! + x3/3! + x4/4! + …
ex, -∞ < x < +∞
sin(x) = Σ ∞k=0 (-1)k (x2k+1)/(2k+1)! = x - x3/3! + x5/5! - x7/7! + …
sin(x), -∞ < x < +∞
cos(x) = Σ ∞k=0 (-1)k (x2k)/(2k)! = 1 - x2/2! + x4/4! - x6/6! + …
cos(x), -∞ < x < +∞
ln(1 + x) = Σ ∞k=1 (-1)k+1 (xk)/k = x - x2/2 + x3/3 - x4/4 + …
ln(1 + x), -1 < x =< 1
tan-1(x) = Σ ∞k=0 (-1)k (x2k+1)/(2k+1) = x - x3/3 + x5/5 - x7/7 + …
tan-1(x), -1 =< x =< 1
sinh(x) = Σ ∞k=0 (x2k+1)/(2k+1)! = x + x3/3! + x5/5! + x7/7! + …
sinh(x), -∞ < x < +∞
cosh(x) = Σ ∞k=0 (x2k)/(2k)! = 1 + x2/2! + x4/4! + x6/6! + …
cosh(x), -∞ < x < +∞
(1 + x)m = 1 + Σ