1/50
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
\textbf{Properties of Transpose}
For any matrices Aand B , and scalar c :
1. (A^T)^T = A
2. (A + B)^T = A^T + B^T
3. (cA)^T = cA^T
4. (AB)^T = B^T A^T
Inverse of a 2×2 Matrix A=\begin{bmatrix}a & b\\ c & d\end{bmatrix}
A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}, \text{ if } ad - bc \neq 0
\textbf{Solving } A\mathbf{x} = \mathbf{b} \textbf{ using the inverse}
\text{If }A\text{ is invertible, then the solution is: }\mathbf{x}=A^{-1}\mathbf{b}
\textbf{Product: } z \cdot \overline{z}
z \cdot \overline{z} = |z|^2
\textbf{Sum: } z + \overline{z}
z + \overline{z} = 2 \operatorname{Re}(z)
\textbf{Difference: } z - \overline{z}
z - \overline{z} = 2i \operatorname{Im}(z)
\textbf{Addition: } (a + bi) + (c + di)
= (a + c) + (b + d)i
\textbf{Subtraction: } (a + bi) - (c + di)
= (a - c) + (b - d)i
\textbf{Division: } \frac{a + bi}{c + di}
=\frac{(a+bi)(c-di)}{(c+di)(c-di)}=\frac{(a+bi)(c-di)}{c^2+d^2}
\textbf{Multiplication: } (a + bi)(c + di)
=ac+adi+bci+bdi^2=(ac-bd)+(ad+bc)i
\textbf{Properties of Invertible Matrices}
\begin{align*}\text{If }A\text{ is invertible, then } & (A^{-1})^{-1}=A\\ \text{If }A\text{ and }B\text{ are invertible, then } & (AB)^{-1}=B^{-1}A^{-1}\\ \text{If }A\text{ is invertible, then } & (A^{T})^{-1}=(A^{-1})^{T}\end{align*}
\textbf{Matrix Multiplication: Important Warnings}
\begin{align*} & \text{1. Not commutative: }AB\neq BA\text{ in general}\\ & \text{2. }AB=AC\nRightarrow B=C\quad\text{(if }A\text{ is not invertible)}\\ & \text{3. }AB=0\nRightarrow A=0\text{ or }B=0\text{ (not necessarily)}\end{align*}
\textbf{Must-Know: Invertible Matrix Theorem (for } n \times n \text{ matrix } A)
\begin{align*}1.\;\; & A\text{ has }n\text{ pivot positions}\\ 2.\;\; & A\text{ is invertible}\\ 3.\;\; & Ax=0\text{ has only the trivial solution}\\ 4.\;\; & \text{The columns of }A\text{ are linearly independent}\\ 5.\;\; & \text{The columns of }A\text{ span }\mathbb{R}^{n}\\ 6.\;\; & \text{The transformation }x\mapsto Ax\text{ is one-to-one and onto}\end{align*}
\textbf{Standard Rotation Matrix for }\theta\text{ }
R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}
What does it mean for a transformation T\left( \overrightarrow{x} \right)=Ax to be “one-to-one”?
Ax=0 has only the trivial solution (x=0)
A has a pivot in every column
The columns of A are linearly independent
Different inputs give different outputs
Injective
What does it mean for a transformation T\left( \overrightarrow{x} \right)=Ax to be “onto”?
For every b\overrightarrow{}\in\mathbb{R^{n}} , there is a solution to Ax=b
A has a pivot in every row∙
The columns of A span \mathbb{R^{m}}
Every vector in the codomain can be reached
How do pivot positions relate to one-to-one and onto?
Pivot in every column⇒One-to-one
Pivot in every row⇒Onto
What are three key properties of determinants for n \times n matrices?
1. \det(A^T) = \det(A)
2. \det(AB) = \det(A) \cdot \det(B)
3. If c\in\mathbb{R},then\det(cA)=c^{n}\cdot\det(A)
What are some key axioms that define a vector space?
\begin{align*}1.\;\; & \vec{u}+\vec{v}\in V\quad\text{(Closure under addition)}\\ 4.\;\; & \exists\,\vec{0}\in V\text{ such that }\vec{0}+\vec{u}=\vec{u}\quad\text{(Zero vector exists)}\\ 6.\;\; & c\vec{u}\in V\quad\text{(Closure under scalar multiplication)}\end{align*}
\text{What is a basis of a vector space?}
A basis of a vector space V is a set of vectors that is:
Linearly independent
Spans V
How do you check if \overrightarrow{u}\in ColA and how do you find ColA
\vec{u}\in\operatorname{Col}(A) if A\vec{x} = \vec{u} has a solution and ColA is just the spanning set of its columns
What is the null space of a matrix? How do you check if\overrightarrow{u}\in NulA ?
It is the set of all solutions to A\vec{x}=0 and if A\overrightarrow{u}=\overrightarrow{0} then \overrightarrow{u}\in NulA
\text{What equation defines an eigenvalue and eigenvector of } A?
A\vec{x} = \lambda \vec{x}
Where \lambda is an eigenvalue and \vec{x} \ne \vec{0} is its corresponding eigenvector.
\text{How can you rewrite the eigenvalue equation } A\vec{x} = \lambda \vec{x}?
(A - \lambda I)\vec{x} = \vec{0}
This is a homogeneous system with nontrivial solutions when \lambda is an eigenvalue.
\text{What is the characteristic equation for eigenvalues of } A?
\det(A - \lambda I) = 0
A scalar \lambda is an eigenvalue of A if and only if it satisfies this equation.
How do you compute the dot product of two vectors\vec{u}\text{ and }\vec{v}?
\vec{u} \cdot \vec{v} = u_1v_1 + u_2v_2 + \cdots + u_n v_n or \overrightarrow{u}^{T}\overrightarrow{v}
How do you find the length (magnitude) of a vector \vec{v}?
\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + \cdots + v_n^2}
This is the distance from the origin to the point \vec{v} in \mathbb{R}^n
\text{How do you find the angle } \theta \text{ between two vectors } \vec{u} \text{ and } \vec{v}?
\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}
Then use:
\theta = \cos^{-1} \left( \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} \right)
Where \vec{u} \cdot \vec{v} is the dot product, and \|\vec{u}\|,\|\vec{v}\|
are the vector lengths
\text{How do you find the distance between two vectors } \vec{u} \text{ and } \vec{v}?
\text{Distance} = \|\vec{u} - \vec{v}\| = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \cdots + (u_n - v_n)^2}
This is the length of the vector \vec{u} - \vec{v} , the displacement from
\vec{v} to \vec{u}
\text{What does it mean for two vectors } \vec{u} \text{ and } \vec{v} \text{ to be orthogonal?}
\vec{u} \cdot \vec{v} = 0
Two vectors are orthogonal if their dot product is zero
\text{What is an orthogonal set of vectors?}
\text{A set }\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_{n}\}\text{ is orthogonal if }\vec{v}_{i}\cdot\vec{v}_{j}=0\text{ for all }i\ne j.
Each pair of distinct vectors in the set is orthogonal.
What is true about an orthogonal set of nonzero vectors in \mathbb{R}^n?
\text{If }S=\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_{n}\}
is an orthogonal set of nonzero vectors in \mathbb{R}^n,
then S is linearly independent and forms a basis for the subspace it spans.
How do you find the weights (coefficients) in a linear combination using an orthogonal basis?
\text{If } \{ \vec{u}_1, \vec{u}_2, \dots, \vec{u}_p \} \text{ is an orthogonal basis for a subspace } W \subseteq \mathbb{R}^n, \text{ then for } \vec{y} \in W:
\vec{y} = c_1\vec{u}_1 + c_2\vec{u}_2 + \dots + c_p\vec{u}_p
c_j = \frac{\vec{y} \cdot \vec{u}_j}{\vec{u}_j \cdot \vec{u}_j} \quad \text{for } j = 1, \dots, p
What does the coordinate vector [\vec{x}]_B mean?
[\vec{x}]_{B}=\begin{bmatrix}x_1\\ x_2\\ ...\\ x_{n}\end{bmatrix}
This means thatis expressed as a linear combination of the basis vectors in B:
\vec{x} = x_1 \vec{b}_1 + x_2 \vec{b}_2 + \dots + x_n \vec{b}_n
where B=\{\vec{b}_1,\vec{b}_2,\dots,\vec{b}_{n}\rbrace is a basis for the space.
What is a change of basis matrix and how is it used?
To convert coordinates from a basis B to the standard basis:
\vec{x} = P_B [\vec{x}]_B
where P_B = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 & \cdots & \vec{b}_n \end{bmatrix} ge of basis matrix, and each \vec{b}_i is a column vector in basis B.
To convert from standard coordinates to B coordinates:
[\vec{x}]_B = P_B^{-1} \vec{x}
How do you construct the change of basis matrix P_{C \leftarrow B}?
P_{C \leftarrow B} = \begin{bmatrix} [\vec{b}_1]_C & [\vec{b}_2]_C \end{bmatrix} That is P_{C \leftarrow B} has the coordinate vectors of the basis B vectors written in basis C.
If [\vec{b}_1]_C = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \text{ and } [\vec{b}_2]_C = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}, then:
\left\lbrack c_1c_2\right\rbrack\begin{bmatrix}x_1\\ x_2\end{bmatrix}=\vec{b}_1,\left\lbrack c_1c_2\right\rbrack\begin{bmatrix}y_1\\ y_2\end{bmatrix}=\vec{b}_2 and P_{C\leftarrow B}=\begin{bmatrix}c_1 & c_2 & b_1 & b_1\end{bmatrix}
dimNulA
number of free variables
dimColA
number of pivot columns
dimRowA
number of pivot rows
RankA
number of pivot columns in A = dimColA = dimRowA
What must be true for a set of vectors to be a basis for a subspace H?
A set\left\lbrace\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_{n}\right\rbrace is a basis for H if:
The set is linearly independent
The set spans H
How do you normalize a vector to get a unit vector?
To normalize a vector \vec{v}, divide it by its length\hat{v}=\frac{\vec{v}}{\|\vec{v}\|}
Then \hat{v} is a unit vector: \left\Vert\hat{v}\right\Vert=1
What is an orthonormal set?
A set of vectors is orthonormal if:
Every vector in the set is a unit vector
\left\Vert \vec{v}_i \right\Vert = 1
Every pair of distinct vectors is orthogonal
Properties of orthonormal matrix A
A^T A = I
A^T = A^{-1}
What is the least squares solution for an inconsistent system A\vec{x}=\vec{b} ?
A^T A \hat{\vec{x}} = A^T \vec{b}
What are the steps to compute a least squares approximation?
1. Ensure the system A\vec{x}=\vec{b} is inconsistent (no exact solution).
2. Compute A^T A and A^T \vec{b}
3. Solve the normal equation:
A^T A \hat{\vec{x}} = A^T \vec{b}
4. Solve for b:
\hat{b}=A\hat{\vec{x}}
5. Calculate the error:
\|\vec{b} - \hat{\vec{b}}\|
What is a symmetric matrix?
A matrix A is symmetric if it equals its transpose:
A = A^T
What is the Gram-Schmidt process?
The Gram-Schmidt process converts a set of linearly independent vectors
\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}
into an orthogonal (or orthonormal) set
\{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n\}
that spans the same subspace.
The process:
Let v_1=x_1 and w_1=Span\left\lbrace x_1\right\rbrace=Span\left\lbrace w_1\right\rbrace
Let v_2=x_2-proj_{w1}x2_{}=x_2-\frac{x_2v_1}{v_1v_1}v_1 then let w_2=Span\left\lbrace v_1,v_2\right\rbrace
(Let v_2 be the vector produced by subtracting from x_2 its projection into subspace w_1 )
Let Let v_3=x_3-proj_{w2}x3=x_3-\frac{x_3v_1}{v_1v_1}v_1-\frac{x_3v_2}{v_2v_2}v_2 then let w_2=Span\left\lbrace v_1,v_2,v_3\right\rbrace
(Let v_3 be the vector produced by subtracting from x_3 its projection into subspace
What is an orthogonal projection?
An orthogonal projection is a decomposition of a vector \vec{y} into the sum of two orthogonal vectors:
\vec{y} = \hat{\vec{y}} + \vec{z}
Where:
- \hat{y} is the projection of \vec{y} onto a vector \vec{u} (in the span of \vec{u} )
-\vec{z}=\vec{y}-\hat{y} is orthogonal to \vec{u}
What is the formula for the orthogonal projection of \vec{y} onto \vec{u} ?
The orthogonal projection of \vec{y} onto \vec{u} is:
\hat{y}=\text{proj}_{\vec{u}}\vec{y}=\frac{\vec{y} \cdot\vec{u}}{\vec{u} \cdot\vec{u}}\vec{u}
To write \vec{y} as a sum of two orthogonal vectors:
\vec{y}=\hat{y}+(\vec{y}-\hat{y})
You can verify the decomposition is orthogonal by checking
\hat{y} \cdot (\vec{y} - \hat{y}) = 0
What does the number of free variables and solution vectors tell us about the geometric description of a solution set?
0 free variables → A point (unique solution)
1 free variable → A line (span of 1 vector)
2 free variables → A plane (span of 2 vectors)
3 free variables → A 3D subspace (in \mathbb{R^4} or higher)
The vectors in the solution describe the direction of that freedom