Trig Identities, Inverses, Derivatives, and Inverse Derivatives

0.0(0)
studied byStudied by 0 people
GameKnowt Play
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/28

flashcard set

Earn XP

Description and Tags

All the trig idenities for units 2 and 3. (NOT INTEGRALS)

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

29 Terms

1
New cards

Quotient Identity: tan(x) = ?

tan (x) = [ sin(x) / cos(x) ]

2
New cards

Quotient Identity: cot(x) = ?

cot(x) = [ cos(x) / sin(x) ]

3
New cards

Reciprocal: csc(x) = ?

csc(x) = 1 / sin(x)

4
New cards

Reciprocal: sin(x) = ?

sin(x) = 1 / csc(x)

5
New cards

Reciprocal: sec(x) = ?

sec(x) = 1 / cos(x)

6
New cards

Reciprocal: cos(x) = ?

cos(x) = 1 / sec(x)

7
New cards

Reciprocal: cot(x) = ?

cot(x) = 1 / tan(x)

8
New cards

Reciprocal: tan(x) = ?

tan(x) = 1 / cot(x)

9
New cards

Pythagorean identity with sin & cos?

sin²(x) + cos²(x) = 1

10
New cards

Pythagorean sin²(x) = ?

sin²(x) = 1 - cos²(x)

11
New cards

Pythagorean cos²(x) = ?

cos²(x) = 1 - sin²(x)

12
New cards

Pythagorean identity with sec & tan?

sec²(x) - tan²(x) = 1

13
New cards

Pythagorean: sec²(x) = ?

sec²(x) = 1 + tan²(x)

14
New cards

Pythagorean: tan²(x) = ?

tan²(x)= sec²(x) - 1

15
New cards

Pythagorean identity with csc & cot?

csc²(x) - cot²(x) = 1

16
New cards

Pythagorean: csc²(x) = ?

csc²(x) = 1 + cot²(x)

17
New cards

Pythagorean: cot²(x) = ?

cot²(x) = csc²(x) - 1

18
New cards

d/dx [ sin(x) ] = ?

d/dx [ sin(x) ] = cos(x)

19
New cards

d/dx [ cos(x) ] = ?

d/dx [ cos(x) ] = -sin(x)

20
New cards

d/dx [ tan(x) ] = ?

d/dx [ tan(x) ] = sec²(x)

21
New cards

d/dx [ csc(x) ] = ?

d/dx [ csc(x) ] = -csc(x) × cot(x)

22
New cards

d/dx [ sec(x) ] = ?

d/dx [ sec(x) ] = sec(x) × tan(x)

23
New cards

d/dx [ cot(x) ] = ?

d/dx [ cot(x) ] = -csc²(x)

24
New cards

d/dx [ sin-1(x) ] = ?

d/dx [ sin-1(x) ] = [ 1 / √( 1 - x²) ]

25
New cards

d/dx [ cos-1(x) ] = ?

d/dx [ cos-1(x) ] = [ -1 / √( 1 - x²) ]

26
New cards

d/dx [ tan-1(x) ] = ?

d/dx [ tan-1(x) ] = [ 1 / (1 + x²) ]

27
New cards

d/dx [csc-1(x) ] = ?

d/dx [csc-1(x) ] = [ -1 / (x × √(x² - 1)) ]

28
New cards

d/dx [sec-1(x)] = ?

d/dx [sec-1(x)] = [ 1 / (x × √(x² - 1)) ]

29
New cards

d/dx [cot-1(x)] = ?

d/dx [cot-1(x)] = [ -1 / (1 + x²) ]