1/28
All the trig idenities for units 2 and 3. (NOT INTEGRALS)
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Quotient Identity: tan(x) = ?
tan (x) = [ sin(x) / cos(x) ]
Quotient Identity: cot(x) = ?
cot(x) = [ cos(x) / sin(x) ]
Reciprocal: csc(x) = ?
csc(x) = 1 / sin(x)
Reciprocal: sin(x) = ?
sin(x) = 1 / csc(x)
Reciprocal: sec(x) = ?
sec(x) = 1 / cos(x)
Reciprocal: cos(x) = ?
cos(x) = 1 / sec(x)
Reciprocal: cot(x) = ?
cot(x) = 1 / tan(x)
Reciprocal: tan(x) = ?
tan(x) = 1 / cot(x)
Pythagorean identity with sin & cos?
sin²(x) + cos²(x) = 1
Pythagorean sin²(x) = ?
sin²(x) = 1 - cos²(x)
Pythagorean cos²(x) = ?
cos²(x) = 1 - sin²(x)
Pythagorean identity with sec & tan?
sec²(x) - tan²(x) = 1
Pythagorean: sec²(x) = ?
sec²(x) = 1 + tan²(x)
Pythagorean: tan²(x) = ?
tan²(x)= sec²(x) - 1
Pythagorean identity with csc & cot?
csc²(x) - cot²(x) = 1
Pythagorean: csc²(x) = ?
csc²(x) = 1 + cot²(x)
Pythagorean: cot²(x) = ?
cot²(x) = csc²(x) - 1
d/dx [ sin(x) ] = ?
d/dx [ sin(x) ] = cos(x)
d/dx [ cos(x) ] = ?
d/dx [ cos(x) ] = -sin(x)
d/dx [ tan(x) ] = ?
d/dx [ tan(x) ] = sec²(x)
d/dx [ csc(x) ] = ?
d/dx [ csc(x) ] = -csc(x) × cot(x)
d/dx [ sec(x) ] = ?
d/dx [ sec(x) ] = sec(x) × tan(x)
d/dx [ cot(x) ] = ?
d/dx [ cot(x) ] = -csc²(x)
d/dx [ sin-1(x) ] = ?
d/dx [ sin-1(x) ] = [ 1 / √( 1 - x²) ]
d/dx [ cos-1(x) ] = ?
d/dx [ cos-1(x) ] = [ -1 / √( 1 - x²) ]
d/dx [ tan-1(x) ] = ?
d/dx [ tan-1(x) ] = [ 1 / (1 + x²) ]
d/dx [csc-1(x) ] = ?
d/dx [csc-1(x) ] = [ -1 / (x × √(x² - 1)) ]
d/dx [sec-1(x)] = ?
d/dx [sec-1(x)] = [ 1 / (x × √(x² - 1)) ]
d/dx [cot-1(x)] = ?
d/dx [cot-1(x)] = [ -1 / (1 + x²) ]