🧪 Lysosomes + Vacuoles + Cytoskeleton

0.0(0)
studied byStudied by 7 people
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/17

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

18 Terms

1
New cards

Vesicle Targeting Pathways

  • Trans-Golgi → Endosomes

  • Trans-Golgi → Lysosomes

  • Plasma Membrane (PM) → Endosomes

2
New cards

Clathrin and Adaptor Proteins (AP)

  • AP/Clathrin-coated vesicles move from TGN to other vesicles (e.g. lysosomes, endosomes, plant vacuoles)

  • AP/Clathrin-coated vesicles also help form endocytic vesicles to transport vesicles from plasma membrane to endosomes or lysosomes

  • Summary: Depending on what the vesicles are coated with, they are sent to different areas

<ul><li><p class=""><strong>AP/Clathrin-coated vesicles</strong> move from <strong>TGN</strong> to other vesicles (e.g. <strong>lysosomes</strong>, <strong>endosomes</strong>, <strong>plant vacuoles</strong>)</p></li><li><p class=""><strong>AP/Clathrin-coated vesicles</strong> also help form <strong>endocytic vesicles</strong> to transport vesicles from <strong>plasma membrane</strong> to <strong>endosomes</strong> or <strong>lysosomes</strong></p></li><li><p class=""><strong>Summary:</strong> Depending on what the vesicles are coated with, they are sent to different areas</p></li></ul><p></p>
3
New cards

Clathrin AP (Adaptor Proteins) vs. COPs (Coat Protein Complexes)

  • Clathrin is a protein involved in forming vesicles, especially during endocytosis (from plasma membrane to endosomes or lysosomes)

    • It coats vesicles/endosomes to ensure proper trafficking and sorting of cargo

  • COP (COPI and COPII) proteins are involved in vesicle formation and cargo selection within Golgi apparatus and endoplasmic reticulum (ER)

  • Both coat proteins to help direct them to different areas

    • Clathrin coats are geometric, and usually for endosomes

    • COPI and COPII are used for Golgi-related transport (retrograde and anterograde)

4
New cards

Virus Entry and Clathrin's Role

  • Some viruses exploit clathrin-mediated endoxytosis to enter host cells

  • Virus Entry Mechanism

    • Endocytosis: Most viruses enter host cells via clathrin-mediated endocytosis

    • Virus binds to cell surface receptors, triggering clathrin-coated vesicle formation

    • Vesicle forms, internalizes virus into cell, and moves towards early endosomes

    • Once inside endosome, acidification triggers the virus to uncoat and release its genetic material

  • Clathrin's Role

    • Clathrin stabilizes budding process of vesicle

    • Clathrin-coated vesicles facilitate internalization of viruses into host cell

    • The virus interacts with receptor proteins on the membrane, which then recruit clathrin to form the vesicle

    • After vesicle formation, dynamin helps pinch off vesicle from membrane

  • Outcome

    • Virus reaches early endosome, uncoats, and releases its genome to begin replication within the host

    • Clathrin plays key role in initial internalization process

<ul><li><p class="">Some viruses <strong>exploit </strong>clathrin-mediated endoxytosis to enter <strong>host cells</strong></p></li><li><p class=""><strong>Virus Entry Mechanism</strong></p><ul><li><p class=""><strong>Endocytosis</strong>: Most viruses enter host cells via clathrin-mediated endocytosis</p></li><li><p class="">Virus binds to <strong>cell surface receptors</strong>, triggering <strong>clathrin-coated vesicle</strong> formation</p></li><li><p class="">Vesicle forms, <strong>internalizes virus </strong>into cell, and moves towards <strong>early endosomes</strong></p></li><li><p class="">Once inside endosome, <strong>acidification</strong> triggers the virus to uncoat and release its genetic material</p></li></ul></li><li><p class=""><strong>Clathrin's Role</strong></p><ul><li><p class=""><strong>Clathrin</strong> stabilizes budding process of vesicle</p></li><li><p class=""><strong>Clathrin-coated vesicles</strong> facilitate <strong>internalization</strong> of viruses into host cell</p></li><li><p class="">The virus interacts with <strong>receptor proteins</strong> on the membrane, which then recruit <strong>clathrin</strong> to form the vesicle</p></li><li><p class="">After vesicle formation, <strong>dynamin</strong> helps <strong>pinch off</strong> vesicle from membrane</p></li></ul></li><li><p class=""><strong>Outcome</strong></p><ul><li><p class="">Virus reaches <strong>early endosome</strong>, uncoats, and releases its genome to begin replication within the host</p></li><li><p class=""><strong>Clathrin</strong> plays key role in initial <strong>internalization </strong>process</p></li></ul></li></ul><p></p>
5
New cards

Lysosome Functions

  1. Autophagy - Normal breakdown of unnecessary/dysfunctional organelles/components

  2. Degradation of internalized material

    a) Recycling of PM components

    b) Pathogen destruction (only occurs in phagocytic cells)

6
New cards

Autophagy

  • Normal disassembly of unnecessary or dysfunctional cellular components

  • Involves organelle turnover

Autophagosome Formation

  • Isolation membrane from ER engulfs target organelles

  • Forms an autophagosome

Autolysosome Formation

  • Lysosome fuses with autophagosome to form autolysosome

  • Content of autolysosome is enzymatically digested and released (via exocytosis)

Autophagy Process

  • Autophagosome formation → Lysosome recruitment → Autolysosome → Digestion and release

Role in Cell Homeostasis

  • Plays important role in maintaining cell homeostasis

  • Degrades intracellular components and provides degradation products for recycling

  • Dysfunction of autophagy implicated in neurodegenerative diseases, tumorigenesis, and other conditions

<ul><li><p class="">Normal disassembly of unnecessary or dysfunctional cellular components</p></li><li><p class="">Involves organelle turnover</p></li></ul><p class=""><strong>Autophagosome Formation</strong></p><ul><li><p class="">Isolation membrane from ER engulfs target organelles</p></li><li><p class="">Forms an autophagosome</p></li></ul><p class=""><strong>Autolysosome Formation</strong></p><ul><li><p class="">Lysosome fuses with autophagosome to form autolysosome</p></li><li><p class="">Content of autolysosome is enzymatically digested and released (via exocytosis)</p></li></ul><p class=""><strong>Autophagy Process</strong></p><ul><li><p class=""><strong>Autophagosome formation → Lysosome recruitment → Autolysosome → Digestion and release</strong></p></li></ul><p class=""><strong>Role in Cell Homeostasis</strong></p><ul><li><p class="">Plays important role in maintaining cell homeostasis</p></li><li><p class="">Degrades intracellular components and provides degradation products for recycling</p></li><li><p class="">Dysfunction of autophagy implicated in neurodegenerative diseases, tumorigenesis, and other conditions</p></li></ul><p></p>
7
New cards

Degradation of Internalized Material

  1. Recycling

    • Plasma membrane components like receptors and extracellular material are recycled

  2. Phagocytosis (in phagocytic cells)

    • Pathogen (e.g., bacteria) is internalized by phagocytic cells

    • Pathogen-containing vesicle fuses with lysosome

    • Hydrolytic enzymes in lysosome degrade and kill pathogen

    • Debris is released outside the cell via exocytosis

<ol><li><p class=""><strong>Recycling</strong></p><ul><li><p class="">Plasma <strong>membrane components</strong> like receptors and extracellular material are recycled</p></li></ul></li><li><p class=""><strong>Phagocytosis (in phagocytic cells)</strong></p><ul><li><p class="">Pathogen (e.g., bacteria) is <strong>internalized by phagocytic cells</strong></p></li><li><p class="">Pathogen-containing vesicle fuses with lysosome</p></li><li><p class="">Hydrolytic enzymes in lysosome degrade and <strong>kill pathogen</strong></p></li><li><p class="">Debris is released outside the cell via <strong>exocytosis</strong></p></li></ul></li></ol><p></p>
8
New cards

Plant Vacuole Structure

  • Fluid-filled, membrane-bound

  • Can occupy ~90% of cell volume

  • Surrounded by tonoplast (vacuolar membrane, - - - -)

  • Tonoplast contains active transport systems for ion and molecule movement

    • Helps in dark reactions

<ul><li><p class="">Fluid-filled, membrane-bound</p></li><li><p class="">Can occupy <strong>~90% of cell volume</strong></p></li><li><p class="">Surrounded by <strong>tonoplast</strong> (vacuolar membrane, - - - -)</p></li><li><p class="">Tonoplast contains <strong>active transport systems</strong> for ion and molecule <strong>movement</strong></p><ul><li><p class="">Helps in dark reactions</p></li></ul></li></ul><p></p>
9
New cards

Vacuole Functions

  1. Intracellular digestion

    • Similar to lysosomes

    • Slightly acidic pH (~5.0)

    • Contains acid hydrolases

  2. Mechanical support & turgor pressure

    • Provides rigidity to plant

    • Supports soft tissues

    • Helps stretch cell wall during growth

  3. Storage

    • Stores solutes, macromolecules, amino acids, sugars

    • Stores toxic compounds and pigments (e.g. anthocyanin)

  4. Other roles

    • Regulation of cytoplasmic pH

    • Sequestration of toxic ions

    • Regulation of turgor pressure

    • CO₂ storage as malate

<ol><li><p class=""><strong>Intracellular digestion</strong></p><ul><li><p class="">Similar to <strong>lysosomes</strong></p></li><li><p class="">Slightly acidic pH (~5.0)</p></li><li><p class="">Contains acid <strong>hydrolases</strong></p></li></ul></li><li><p class=""><strong>Mechanical support &amp; turgor pressure</strong></p><ul><li><p class="">Provides <strong>rigidity </strong>to plant</p></li><li><p class="">Supports soft tissues</p></li><li><p class="">Helps <strong>stretch cell wall during growth</strong></p></li></ul></li><li><p class=""><strong>Storage</strong></p><ul><li><p class="">Stores <strong>solutes, macromolecules, amino acids, sugars</strong></p></li><li><p class="">Stores <strong>toxic compounds</strong> and <strong>pigments</strong> (e.g. <strong>anthocyanin</strong>)</p></li></ul></li><li><p class=""><strong>Other roles</strong></p><ul><li><p class="">Regulation of <strong>cytoplasmic pH</strong></p></li><li><p class="">Sequestration of <strong>toxic ions</strong></p></li><li><p class="">Regulation of <strong>turgor pressure</strong></p></li><li><p class="">CO₂ storage as <strong>malate</strong></p></li></ul></li></ol><p></p>
10
New cards

Cytoskeleton

  • Dynamic network of interconnected filaments and tubes

  • Extends through cytosol and some organelles in eukaryotes

Functions

  1. Structural support

  2. Spatial organization within cell

  3. Intracellular transport

  4. Contractility and motility

Components

  • Microtubules

  • Microfilaments

  • Intermediate filaments

<ul><li><p class="">Dynamic network of interconnected <strong>filaments</strong> and <strong>tubes</strong></p></li><li><p class="">Extends through <strong>cytosol</strong> and some <strong>organelles</strong> in eukaryotes</p></li></ul><p class=""><strong>Functions</strong></p><ol><li><p class=""><strong>Structural support</strong></p></li><li><p class=""><strong>Spatial organization</strong> within cell</p></li><li><p class=""><strong>Intracellular transport</strong></p></li><li><p class=""><strong>Contractility</strong> and <strong>motility</strong></p></li></ol><p class=""><strong>Components</strong></p><ul><li><p class=""><span style="color: red">Micro</span>tubules</p></li><li><p class=""><span style="color: red">Micro</span><span style="color: yellow">filaments</span></p></li><li><p class="">Intermediate <span style="color: yellow">filaments</span></p></li></ul><p></p>
11
New cards

Functions of the Cytoskeleton

Vesicle transport

  • Centrosome releases tubules to form cytoskeleton

  • Cytoskeleton forms tracks for motor proteins like kinesin and dynein

  • Vesicles move along microtubules to reach specific destinations (e.g. Golgi, plasma membrane)

Extension of neurites (Axons/Dendrites)

  • Actin filaments and microtubules support growth of neurites (axons or dendrites)

  • Important for forming neural connections during development

Cell division

  • Microtubules form mitotic spindles to separate chromosomes

  • Actin filaments form contractile ring for cytokinesis (splitting cytoplasm)

Cilium or flagellum

  • Made of microtubule-based structures

  • Dynein arms slide microtubules to produce bending movement

  • Used for motility (e.g. sperm flagellum) or fluid movement across cell surfaces (e.g. respiratory tract)

  • Shortening of tubules allows for movement

12
New cards

Components of Cytoskeleton

  1. Microfilaments

    • 7-9 nm

    • Double helix of actin (protein) monomers

  2. Intermediate filaments

    • 10 nm

    • Strong fiber made up of various kinds of proteins

  3. Microtubules

    • 25 nm

    • Hollow tube made up of alpha- and beta-tubulin (called dimers when they combine, also protein)

<ol><li><p class=""><span style="color: red">Micro</span><span style="color: yellow">filaments</span></p><ul><li><p class="">7-9 nm</p></li><li><p class="">Double helix of actin (protein) monomers</p></li></ul></li><li><p class="">Intermediate <span style="color: yellow">filaments</span></p><ul><li><p class="">10 nm</p></li><li><p class="">Strong fiber made up of various kinds of proteins</p></li></ul></li><li><p class=""><span style="color: red">Micro</span>tubules</p><ul><li><p class="">25 nm</p></li><li><p class="">Hollow tube made up of alpha- and beta-tubulin (called dimers when they combine, also protein)</p></li></ul></li></ol><p></p>
13
New cards

Microtubules (MT)

  • Largest cytoskeletal element (25 nm diameter)

  • Polymer of two tubulin monomers: α-tubulin and β-tubulin

  • Form hollow tubes made of repeating α-β dimers

Types of Microtubules

  1. Axonemal MT

    • Highly organized and stable

    • Found in motile structures like cilia and flagella

    • Involved in cell movement

  1. Cytoplasmic MT

    • Loosely organized, very dynamic

    • Found in cytosol

    • Involved in vesicle transport, cell shape, spindle formation during division

<ul><li><p class=""><strong>Largest cytoskeletal element</strong> (25 nm diameter)</p></li><li><p class="">Polymer of two tubulin monomers: <strong>α-tubulin</strong> and <strong>β-tubulin</strong></p></li><li><p class="">Form <strong>hollow tubes</strong> made of repeating α-β dimers</p></li></ul><p class=""><strong>Types of Microtubules</strong></p><ol><li><p class=""><strong>Axonemal MT</strong></p><ul><li><p class=""><strong>Highly organized</strong> and <strong>stable</strong></p></li><li><p class="">Found in <strong>motile structures</strong> like <strong>cilia</strong> and <strong>flagella</strong></p></li><li><p class="">Involved in <strong>cell movement</strong></p></li></ul></li></ol><ol start="2"><li><p class=""><strong>Cytoplasmic MT</strong></p><ul><li><p class=""><strong>Loosely organized</strong>, <strong>very dynamic</strong></p></li><li><p class="">Found in <strong>cytosol</strong></p></li><li><p class="">Involved in <strong>vesicle transport</strong>, <strong>cell shape</strong>, <strong>spindle formation during division</strong></p></li></ul></li></ol><p></p>
14
New cards

Microtubule Structure

  • Made of α/β-tubulin heterodimers

  • Heterodimers form long protofilaments

  • 13 protofilaments align in parallel

  • Form a hollow cylindrical polymer

  • Cylinder gives rigidity and polarity to microtubule structure

  • Heterodimers aligned in same direction (head to tail) → creates structural polarity

  • Microtubules have a fast-growing + end and slow-growing - end

  • Polarity is important for MT growth and direction of transport along MT

<ul><li><p class="">Made of <strong>α/β-tubulin heterodimers</strong></p></li><li><p class="">Heterodimers form <strong>long protofilaments</strong></p></li><li><p class=""><strong>13 protofilaments</strong> align in parallel</p></li><li><p class="">Form a <strong>hollow cylindrical polymer</strong></p></li><li><p class="">Cylinder gives <strong>rigidity and polarity</strong> to microtubule structure</p></li><li><p class=""><strong>Heterodimers aligned in same direction</strong> (head to tail) → creates <strong>structural polarity</strong></p></li><li><p class="">Microtubules have a <strong>fast-growing + end</strong> and <strong>slow-growing - end</strong></p></li><li><p class=""><strong>Polarity is important</strong> for MT <strong>growth</strong> and <strong>direction of transport</strong> along MT</p></li></ul><p></p>
15
New cards

Microtubule Assembly and Disassembly

  • Dynamic instability → MTs rapidly grow and shrink

    • Half-life of most MTs in vivo is just minutes

  • Shrinkage at + end can happen quickly → Called catastrophe

  • MT formation is regulated

  • Microtubule-organizing center (MTOC) = Main site of MT assembly

<ul><li><p class=""><strong>Dynamic instability</strong> → MTs rapidly grow and shrink</p><ul><li><p class=""><strong>Half-life</strong> of most MTs in vivo is just <strong>minutes</strong></p></li></ul></li><li><p class=""><strong>Shrinkage at + end</strong> can happen quickly → Called <strong>catastrophe</strong></p></li><li><p class=""><strong>MT formation is regulated</strong></p></li><li><p class=""><strong>Microtubule-organizing center (MTOC)</strong> = Main site of MT assembly</p></li></ul><p></p>
16
New cards

Microtubule-Associated Proteins (MAPs)

  • Bind to microtubules (MTs)

  • Modulate MT assembly and function

  • Mediate interactions with vesicles, organelles, other structures

  • Can stabilize MTs or stimulate their assembly

  • Tau is primarily found in axons

  • MAP2 is primarily found in dendrites

<ul><li><p class="">Bind to <strong>microtubules (MTs)</strong></p></li><li><p class=""><strong>Modulate</strong> MT <strong>assembly</strong> and <strong>function</strong></p></li><li><p class="">Mediate <strong>interactions</strong> with vesicles, organelles, other structures</p></li><li><p class="">Can <strong>stabilize</strong> MTs or <strong>stimulate</strong> their assembly</p></li></ul><p class=""></p><ul><li><p class="">Tau is primarily found in axons</p></li><li><p class="">MAP2 is primarily found in dendrites</p></li></ul><p></p>
17
New cards

Classes of Microtubule-Associated Proteins (MAPs)

1. Non-Motor MAPs

  • Control MT organization in cytosol

  • Example: Tau protein in neurons

  • Defective Tau → neurofibrillary tangles → linked to Alzheimer’s disease

2. Motor MAPs

  • Two main types: Kinesin and dynein

  • Use ATP to generate force

  • Move material along MTs

  • Generate sliding force between MTs

<p><strong>1. Non-Motor MAPs</strong></p><ul><li><p class="">Control <strong>MT organization</strong> in cytosol</p></li><li><p class="">Example: <strong>Tau protein</strong> in neurons</p></li><li><p class="">Defective Tau → <strong>neurofibrillary tangles</strong> → linked to <strong>Alzheimer’s disease</strong></p></li></ul><p class=""><strong>2. Motor MAPs</strong></p><ul><li><p class="">Two main types: <strong>Kinesin</strong> and <strong>dynein</strong></p></li><li><p class="">Use <strong>ATP</strong> to generate <strong>force</strong></p></li><li><p class=""><strong>Move material</strong> along MTs</p></li><li><p class="">Generate <strong>sliding force</strong> between MTs</p></li></ul><p></p>
18
New cards

Summary

Exocytosis

  • Secretory vesicles deliver contents outside cell

  • Path: ER → vesicles → Golgi → vesicles → PM

Endocytosis

  • Vesicles bring contents into cell

  • Path: Vesicles (endosomes) → Lysosomes

Autophagy

  • Lysosomes recycle "used" organelles

Phagocytosis

  • Capture and destruction of pathogens (e.g. bacteria)

Vacuoles

  • Plant organelles that store compounds and provide structural support via turgor pressure

Cytoskeleton

  • Main structural components: Microtubules, Intermediate filaments, and Microfilaments

Microtubules (MT)

  • Polymers of α and β tubulin

  • Provide structural support and intracellular tracks (in animals)